Abstract
A class of formulas called factored negation normal form is introduced. They are closely related to BDDs, but there is a DPLL-like tableau procedure for computing them that operates in PSPACE.Ordered factored negation normal form provides a canonical representation for any boolean function. Reduction strategies are developed that provide a unique reduced factored negation normal form. These compilation techniques work well with negated form as input, and it is shown that any logical formula can be translated into negated form in linear time.
This research was supported in part by the National Science Foundation under grant CCR-0229339.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D’Agostino, M., Mondadori, M.: The taming of the cut. Journal of Logic and Computation 4(3), 285–319 (1994)
Bryant, R.E.: Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Computing Surveys 24(3), 293–318 (1992)
Cadoli, M., Donini, F.M.: A survey on knowledge compilation. AI Communications 10, 137–150 (1997)
Darwiche, A.: Compiling devices: A structure-based approach. In: Proc. International Conference on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 156–166. Morgan Kaufmann, San Francisco (1998)
Darwiche, A.: Decomposable negation normal form. J. ACM 48(4), 608–647 (2001)
Forbus, K.D., de Kleer, J.: Building Problem Solvers. MIT Press, Cambridge (1993)
Goubault, J., Posegga, J.: BDDs and automated deduction. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS (LNAI), vol. 869, pp. 541–550. Springer, Heidelberg (1994)
Hsiang, J., Huang, G.S.: Some Fundamental Properties of Boolean Ring Normal Forms. DIMACS series on Discrete Mathematics and Computer Science, vol. 35, The Satisfiability Problem, AMS, pp. 587–602 (1997)
Marquis, P.: Knowledge compilation using theory prime implicates. In: Proc. IJCAI 1995, pp. 837–843. Morgan Kaufmann, San Mateo (1995)
Massacci, F.: Simplification: A General Constraint Propagation Technique for Propositional and Modal Tableau. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 217–232. Springer, Heidelberg (1998)
Mondadori, M.: Classical Analytical Deduction, part I & II. Annali dell’ Università di Ferrara, Nuova Serie, sezione III, Filosofia, Discussion Paper, n. 1 & 5, Università degli Studi di Ferrara, Italy (1988)
Murray, N.V., Rosenthal, E.: Inference with path resolution and semantic graphs. J. ACM 34(2), 225–254 (1987)
Murray, N.V., Rosenthal, E.: Dissolution: Making paths vanish. J. ACM 40(3), 504–535 (1993)
Murray, N.V., Rosenthal, E.: Tableaux, Path Dissolution, and Decomposable Negation Normal Form for Knowledge Compilation. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, Springer, Heidelberg (2003)
Hähnle, R., Murray, N.V., Rosenthal, E.: Normal forms for knowledge compilation, Technical Report SUNYA-CS-04-06, Department of Computer Science, University at Albany - SUNY (October 2004)
Ramesh, A., Murray, N.V.: An application of non-clausal deduction in diagnosis. Expert Systems with Applications 12(1), 119–126 (1997)
Selman, B., Kautz, H.: Knowledge compilation and theory approximation. J. ACM 43(2), 193–224 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hähnle, R., Murray, N.V., Rosenthal, E. (2005). Normal Forms for Knowledge Compilation. In: Hacid, MS., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds) Foundations of Intelligent Systems. ISMIS 2005. Lecture Notes in Computer Science(), vol 3488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11425274_32
Download citation
DOI: https://doi.org/10.1007/11425274_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25878-0
Online ISBN: 978-3-540-31949-8
eBook Packages: Computer ScienceComputer Science (R0)