Skip to main content

Automatic Determination of the Number of Fuzzy Clusters Using Simulated Annealing with Variable Representation

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3488))

Included in the following conference series:

Abstract

In this article a simulated annealing based approach for automatically clustering a data set into a number of fuzzy partitions is proposed. This is in contrast to the widely used fuzzy clustering scheme, the fuzzy C-Means (FCM) algorithm, which requires the a priori knowledge of the number of clusters. The said approach uses a real-coded variable representation of the cluster centers encoded as a state of the simulated annealing, while optimizing the Xie-Beni cluster validity index. In order to automatically determine the number of clusters, the perturbation operator is defined appropriately so that it can alter the cluster centers, and increase as well as decrease the encoded number of cluster centers. The operators are designed using some domain specific information. The effectiveness of the proposed technique in determining the appropriate number of clusters is demonstrated for both artificial and real-life data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Google Scholar 

  3. Hammah, R.E., Curran, J.H.: Validity measures for the fuzzy cluster analysis of orientations. IEEE Trans. Patt. Anal. Mach. Intell, 1467–1472 (2000)

    Google Scholar 

  4. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cyberns. 3, 32–57 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bezdek, J.C.: Cluster validity with fuzzy sets. J. Cybernet. 3, 58–72 (1974)

    Article  MathSciNet  Google Scholar 

  6. Bezdek, J.C.: Mathematical models for systematics and taxonomy. In: Estabrook, G. (ed.) Proc. 8th Intl. Conf. Numerical Taxonomy, pp. 143–166. Freeman, San Francisco (1975)

    Google Scholar 

  7. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Patt. Anal. Mach. Intell. 1, 224–227 (1979)

    Article  Google Scholar 

  8. Windham, M.P.: Cluster validity for the fuzzy c-means clustering algorithm. IEEE Trans. Patt. Anal. Mach. Intell. 4, 357–363 (1982)

    Article  Google Scholar 

  9. Bensaid, A.M., Hall, L.O., Bezdek, J.C., Clarke, L.P., Silbiger, M.L., Arrington, J.A., Murtagh, R.F.: Validity-guided (re)clustering with applications to image segmentation. IEEE Trans. Fuzzy Systs. 4, 112–123 (1996)

    Article  Google Scholar 

  10. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Patt. Anal. Mach. Intell. 13, 841–847 (1991)

    Article  Google Scholar 

  11. Kirkpatrik, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  12. van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. Kluwer Academic Publishers, Dordrecht (1987)

    MATH  Google Scholar 

  13. Bakker, B., Heskes, T.: Model clustering by deterministic annealing. In: European Symposium on Artificial Neural Networks, Bruges, Belgium, pp. 87–92 (1999)

    Google Scholar 

  14. Lukashin, A.V., Fuchs, R.: Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters. Bioinformatics 17, 405–419 (2001)

    Article  Google Scholar 

  15. Bandyopadhyay, S., Maulik, U., Pakhira, M.K.: Clustering using simulated annealing with probabilistic redistribution. International Journal of Pattern Recognition and Artificial Intelligence 15, 269–285 (2001)

    Article  Google Scholar 

  16. Hermes, L., Buhmann, J.M.: Semi-supervised image segmentation by parametric distributional clustering. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683, pp. 229–245. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Mitra, S., Pal, S.K.: Fuzzy multi-layer perceptron, inferencing and rule generation. IEEE Trans. Neural Networks 6, 51–63 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bandyopadhyay, S. (2005). Automatic Determination of the Number of Fuzzy Clusters Using Simulated Annealing with Variable Representation. In: Hacid, MS., Murray, N.V., RaÅ›, Z.W., Tsumoto, S. (eds) Foundations of Intelligent Systems. ISMIS 2005. Lecture Notes in Computer Science(), vol 3488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11425274_61

Download citation

  • DOI: https://doi.org/10.1007/11425274_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25878-0

  • Online ISBN: 978-3-540-31949-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics