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Abstract. We consider secure multi-party computation in the asyn-
chronous model and present an efficient protocol with optimal resilience.
For n parties, up to ¢ < n/3 of them being corrupted, and security
parameter s, a circuit with ¢ gates can be securely computed with com-
munication complexity O(cn3/i) bits. In contrast to all previous asyn-
chronous protocols with optimal resilience, our protocol requires access
to an expensive broadcast primitive only O(n) times — independently of
the size ¢ of the circuit. This results in a practical protocol with a very
low communication overhead.

One major drawback of a purely asynchronous network is that the
inputs of up to ¢t honest parties cannot be considered for the evaluation
of the circuit. Waiting for all inputs could take infinitely long when the
missing inputs belong to corrupted parties. Our protocol can easily be
extended to a hybrid model, in which we have one round of synchronicity
at the end of the input stage, but are fully asynchronous afterwards. In
this model, our protocol allows to evaluate the circuit on the inputs of
every honest party.

1 Introduction

SECURE MULTI-PARTY COMPUTATION. The goal of secure multi-party compu-
tation (MPC) is to allow a set of n players to evaluate an agreed function of
their inputs in a secure way, where security means that an adversary corrupting
some of the players cannot achieve more than controlling the inputs and outputs
of these players. In particular, the adversary does not learn the inputs of the
uncorrupted players, and furthermore, she cannot influence the outputs of the
uncorrupted players except by selecting the inputs of the corrupted players.
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We consider a static active t-adversary who can corrupt up to t of the players
and take full control over them. Furthermore, we focus on asynchronous commu-
nication, i.e., the messages in the network can be delayed for an arbitrary amount
of time (but eventually, all messages are delivered). As a worst-case assumption,
we give the ability of controlling the delay of messages to the adversary.

Asynchronous communication models real-world networks (like the Internet)
much better than synchronous communication. However, it turns out that MPC
protocols for asynchronous networks are significantly more involved than their
synchronous counterparts. One reason for this is that in an asynchronous net-
work, when a player does not receive an expected message, he cannot distinguish
whether the sender is corrupted and did not send the message, or the message was
sent but delayed in the network. This implies also that in a fully asynchronous
setting it is impossible to consider the inputs of all uncorrupted players when
evaluating the function. The inputs of up to ¢ (potentially honest) players have
to be ignored, because waiting for them could turn out to be endless [Bech4].

HISTORY AND RELATED WORK. The MPC problem was first proposed by
Yao [Yao82] and solved by Goldreich, Micali, and Wigderson [GMWS&T7| for
computationally bounded adversaries and by Ben-Or, Goldwasser, and Wigder-
son [BGWSS| and independently by Chaum, Crépeau, and Damgard [CCDSS]
for computationally unbounded adversaries. All these protocols considered a
synchronous network with a global clock. The first MPC protocol for the asyn-
chronous model (with unconditional security) was proposed by Ben-Or, Canetti,
and Goldreich [BCG93]. Extensions and improvements, still in the uncondi-
tional model, were proposed in [BKR94L[SR0O0,[PSR0O2]. A great overview of asyn-
chronous MPC with unconditional security is given in [Can95].

The most efficient asynchronous protocols up to date are the ones of Sri-
nathan and Rangan [SR00] and of Prabhu, Srinathan and Rangan [PSR02]. The
former protocol requires §2(n?) invocations to the broadcast primitive for every
multiplication, which makes the protocol very inefficient when broadcast is re-
alized with some asynchronous broadcast protocol. The latter protocol is rather
efficient; it requires 2(n*x) bits of communication per multiplication. However,
it tolerates only t < n/4 corruptions, which is non-optimal.

CONTRIBUTIONS. We present the first asynchronous MPC protocol for the cryp-
tographic model. The protocol is secure with respect to an active adversary
corrupting up to t < n/3 players; this is optimal in an asynchronous network.
The main achievement of the new protocol is its efficiency: Once the in-
puts are distributed, the protocol requires O(cpm3k) bits of communication to
evaluate a circuit with cp; multiplication gates and with security parameter k.
This is the same communication complexity that is required by the most effi-
cient known protocol for the synchronous model [CDNOI], and improves on the
communication complexity of the most efficient optimally-secure asynchronous
MPC protocol [SRO0] by a factor of 2(n). In contrast to both the protocols of
and [SRO0], our protocol uses broadcast only in a very limited manner:
the number of broadcast invocations is independent of the size of the circuit. This
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nice property is also achieved in [PSR02], but this protocol is non-optimal (it
tolerates only ¢t < n/4) and requires §2(n) times more communication than ours.

In an asynchronous MPC, the agreed function can be evaluated only on
a subset of the inputs, i.e., some (potentially honest) player cannot provide
their input into the computation. However, the presented protocol can easily be
extended to consider the input of each (honest) party, at the cost of one round
of synchronization required at the end of the input stage.

2  Preliminaries, Notation and Tools

2.1 Formal Model

We use the model of security of asynchronous protocols from [Can01]. Formally
our model for running a protocol will be the hybrid model with a functionality
for distributing some initial cryptographic keys between the parties using some
function init. The ideal functionality that we wish to realize is given by a circuit
Circ, or more precisely a family of circuits. Namely, the functionality allows the
adversary to specify a set of at least n — t parties, W C [n] (where [n] denotes
the set {1,...,n}), which are to supply the inputs to the computation. The
circuit to be computed, Circ = Circ(W), is then uniquely defined by the subset
of parties providing the inputs. The informal proofs in this extended abstract do
not require familiarity with specific details of the model in [Can01], and below
we only recall the needed specificities.

ASYNCHRONOUS PROTOCOLS. An n-player protocol is a tuple 7 = (P, ..., Py,
init), where each P; is a probabilistic interactive Turing machine, and init is an
initialization function, used for the usual set-up tasks (initialize the players, set
up cryptographic keys, etc.). The parties (players) communicate over an asyn-
chronous network, in which the delay between sending and delivery of a mes-
sage is unbounded. More precisely, when a party sends a message, this message is
added to the set of messages already sent but not yet delivered, Msg = {(i, j,m)},
where (i, j, m) denotes a message m from P; to P;. The delivery of the messages
is scheduled by the adversary (see below).

We assume that the function to be computed is given as a circuit consisting
of input gates augmented by the party to supply the input, linear gates and
multiplication gates, and output gates augmented by the party to see the output,
all over some ring M.

ADVERSARY. We consider a polynomially bounded adversary, and our construc-
tions are parametrized by a security parameter . The adversary controls the de-
livery of messages and can corrupt up to ¢t parties. A corrupted party is under full
control of the adversary, which sees all incoming messages, and determines all out-
going messages. The adversary schedules the delivery of the messages arbitrarily,
by picking a message (i,7,m) € Msg and delivering it to the recipient. The ad-
versary doesn’t see the contents of messages exchanged between honest (i.e., not
corrupted) parties, and any message from an honest party to an honest party is
eventually delivered. In most cases we require that ¢ < n/3, but will sometimes
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consider other thresholds. The set of parties to be corrupted is specified by the
adversary before the execution of the protocol, i.e., we consider static security.

EXECUTION OF A PROTOCOL. Before the protocol starts, an initialization
function init is evaluated on the security parameter 1% and on random input
r € {0,1}*, to generate a tuple (svy,...,sv,,pv) = init(k,r) of secret values sv;
and a public value pv. Each party P; is initialized with (17, sv;, pv). At the begin-
ning of the protocol execution, every party P; receives its input value x; from the
environment, and produces some initial messages (i, -, -) which are added to the
set Msg. The adversary is given the public value pv, the values (z;, sv;) for each
corrupted party P, and the control over the set Msg. Subsequently the protocol
is executed in a sequence of activations. In each activation the adversary picks a
message (7,7, m) € Msg and delivers it to P;. Upon delivery of a message, party
P; performs some computation based on its current state, updates its state and
produces some messages of the form (j,-,-), which are added to the set Msg.
In some activation the parties can produce the output to the environment and
terminate. The adversary determines the inputs z; and all messages of corrupted
parties. The adversary and the environment can communicate with each other.

SECURITY. The security of a protocol is defined relative to an ideal evaluation
of the circuit by requiring that for any adversary attacking the execution of the
protocol there exists a simulator which can simulate the attack of the adversary
to any environment given only an ideal process for evaluating the circuit. In the
ideal process the simulator has very restricted capabilities: It sees the inputs
of the corrupted parties. Then it specifies a subset W C [n] of the parties to
be the input providers, under the restriction that |[WW| > n — t. The set W is
used to pick the circuit Circ = Circ(W) to be evaluated. The input gates of
Circ are assigned the inputs of the corresponding parties (the adversary specifies
the inputs of the corrupted parties), then Circ is evaluated and the outputs of
the corrupted parties are shown to the simulator. Given these capabilities the
simulator must then simulate to the environment the entire view of an execution
of the protocol, including the messages sent and the possible communication
between the environment and the adversary.

In the following subsections we briefly describe cryptographic tools needed
in our constructions, and introduce a notation for their use in the rest of the

paper.

2.2 Homomorphic Public-Key Encryption with Threshold
Decryption

We assume the existence of a semantically secure probabilistic public-key en-
cryption scheme, which also is homomorphic and enables threshold decryption:

ENCRYPTION AND DECRYPTION. For an encryption key e and a decryption
key d, let &. : M x R — C denote the encryption function mapping (plaintext,
randomness) pair (¢,r) € M x R to a ciphertext C' € C, and let &3 : C — M
denote the corresponding decryption function. We require that M is a ring Zy,
for some M > 1, and we use - to denote multiplication in M. We often use
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capital letters to denote an encryption of the corresponding lower-case letter.
When keys are understood, we write & and 2 instead of &, resp. 24, and we
frequently omit the explicit mention of the randomness in encryption function &.

HOMOMORPHIC PROPERTY. We require that there exist (efficiently computable)
binary operations +, *, and @, such that (M, +), (R, %), and (C, @) are algebraic
groups, and that &, is a group homomorphism, i.e. that

E(a,ra) ® Eb,m) = E(a+byraxrs) .

We use A © B to denote A @ (—B), where —B denotes the inverse of B in the
group C. For an integer a and B € C we use a - B to denote the sum of B with
itself a times in C.

CIPHERTEXT RE-RANDOMIZATION. For C € C and r € R we let Z.(C,r) =
C@é.(0,1). We use C" = Z.(C) to denote C" = Z.(C,r) for uniformly random
r € R. We call " = Z.(C) a re-randomization of C'. Note that C” is a uniformly
random encryption of Z4(C).

THRESHOLD DECRYPTION. We require that there exists a threshold function
sharing of Z; among n parties, i.e., for some construction threshold 1 < tp <n
there exists a sharing (dy,...,d,) of the decryption key d (where d; is intended
for party P;), such that given decryption shares ¢; = % 4,(C) for tp distinct
decryption-key shares d;, it is possible to efficiently compute ¢ such that ¢ =
24(C). Furthermore, the encryption scheme should be still semantically secure
against chosen plaintext attack when the adversary is given tp — 1 decryption-
key shares. Finally, we require that given a ciphertext C, plaintext ¢ = Z4(C),
and a set of tp — 1 decryption-key shares {d;}, it is possible to compute all n
decryption shares ¢; = Z;.4,(C), j = 1,...,n. We will always have tp = ¢ 4 1.
When keys are understood, we write 2;(C) to denote the function computing
decryption share of party P; for ciphertext C, and ¢ = 2(C, {c¢;}) to denote the
process of combining the decryption shares {¢;} to a plaintext c.

ROBUSTNESS. To efficiently protect against cheating servers we require that
there exists an efficient two-party zero-knowledge protocol for proving the cor-
rectness of a decryption share ¢; = Z; 4,(C) given (e,C,¢;) as instance, and
given (i,d;) and randomness r as witness. We require also that there exists an
efficient two-party zero-knowledge protocol for proving the knowledge of a plain-
text, given (e, C) as instance and the corresponding plaintext ¢ and randomness
r as witness. We require that these protocols communicate O(x) bits per proof.

2.3 Digital Signatures

We assume the existence of a digital signature scheme unforgeable against an
adaptive chosen message attack. For a signing key s and a verifying key v, let
Sign, : {0,1}* — {0,1}" denote the signing function, and let Ver, : {0,1}* x
{0,1}* — {0,1} denote the verifying function, where Ver,(m,o) = 1 indi-
cates that o is a valid signature on m. We write Sign,/Ver; to denote the sign-
ing/verification operation of party P;.
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2.4  Threshold Signatures

We assume the existence of a threshold signature scheme unforgeable against
an adaptive chosen message attack. For a signing key s and a verifying key v,
let .7 : {0,1}* — {0,1}" denote the signing function, and let ¥, : {0,1}* x
{0,1}* — {0,1} denote the verifying function, where ¥,(m,o) = 1 indicates
that o is a valid signature on m.

THRESHOLD SIGNING. We require that there exists a threshold function sharing
of .7; among n parties, i.e., for some signing threshold 1 < ts < n there exists a
sharing (s1,...,s,) of the signing key s (where s; is intended for party P;), such
that given signature shares o; = .%; 5, (m) for ts distinct signing-key shares s;,
it is possible to efficiently compute o such that ¥, (m, o) = 1. Furthermore, the
threshold signature scheme should be still unforgeable against adaptive chosen
message attack when the adversary is given ts — 1 signing-key shares. Finally,
we require that given a signature o on m, and ts — 1 signing-key shares {s;},
it is possible to compute all n signature shares 0; = .. (m), j = 1,...,n.
We will always have ts = n — t. When keys are understood, we write .%;(m) to
denote the function computing signature share of party P; for message m, and
o =.7(m,{o;}) to denote the process of combining the signature shares {o;} to
a signature o.

ROBUST THRESHOLD SIGNING. To efficiently protect against cheating servers
we require that there exists an efficient two-party zero-knowledge protocol for
proving the correctness of a signature share o; = .%; 5, (m), given (v,m,0;) as
instance and given (i, s;) as witness. We require that this protocol communicates
O(k) bits per proof.

2.5 Byzantine Agreement

We assume the existence of a Byzantine agreement (BA) protocol, i.e., a protocol
with the following properties: The input of party P; is a bit v; € {0,1} and the
output of the BA is a bit w € {0, 1}. If all honest parties enter the BA, then the
BA eventually terminates. Furthermore, if the BA terminates with output w,
then some honest party entered the BA with input v; = w. In particular, if all
honest parties have the same input v; = v, then the output of the BA is w = v.

2.6 Cryptographic Assumptions and Instantiations of Tools

The security of our constructions is based on decisional composite residuosity
assumption (DCRA) [Pai99]. Alternatively, it could be based also on QRA and
strong RSA. We stress, that our constructions are in the plain model. In partic-
ular, our constructions do not make use of random oracles.

HOMOMORPHIC ENCRYPTION WITH THRESHOLD DECRYPTION. An example of
a scheme satisfying all required properties is Paillier’s cryptosystem [Pai99] en-
hanced by threshold decryption as in [FPS00,[DJO0T]. In this scheme M = Zy
for an RSA modulus N. Another example can be based on the QR assumption
and the strong RSA assumption. [CDNOT].
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DIGITAL SIGNATURES. As our digital signature scheme we use standard RSA

signatures [RSATS].

THRESHOLD SIGNATURES. As an example we can use the threshold signa-
ture scheme by Shoup [Sho00]. The security of the threshold signature scheme
in [Sho00] is based on the assumption that standard RSA signatures are secure.
As presented in [Sho00] the zero-knowledge proofs are non-interactive but for
the random-oracle model. The protocol can be modified to be secure in the plain
(random oracle devoid) model by using interactive proofs (cf. [Nie02]).

BYZANTINE AGREEMENT. In our protocols we employ the efficient Byzantine
agreement protocol of Cachin et al. [CKS00], which has expected constant round
complexity, and expected bit complexity of O(n?k). As presented in [CKS00)
the security proof of the protocol needs the random-oracle methodology (for the
above mentioned threshold signature scheme). This protocol also can be modified
to be secure in the plain model [Nie02].

3 The New Protocol

Our protocol follows the paradigm of secure multi-party computation based on a
threshold homomorphic encryption scheme, as introduced by Franklin and Haber
[FH9G], and made robust by Cramer, Damgard and Nielsen [CDNO1]. However,
both protocols use synchrony in an essential manner.

A HIGH-LEVEL OVERVIEW. The protocol proceeds in three stages, an input
stage, an evaluation stage, and a termination stage. In the following, we briefly
summarize the goal of each stage:

— Input stage: Every player provides an encryption of his input to every other
player, and the players jointly agree on a subset of players who have correctly
provided their inputs.

— Evaluation stage: Every player independently evaluates the circuit on a gate-
by-gate basis, with help of the other players. The circuit consists of linear
gates, multiplication gates, and output gates. The circuit may depend on the
selected subset of players that have provided input.

— Termination stage: As soon as a player has completed the circuit evaluation,
he moves into the termination stage, where the players jointly agree that the
circuit evaluation is completed, every player has received (or will eventually
receive) the output(s), and hence every player who is still in the evaluation
stage can safely abort it.

By having every player evaluate the circuit on his own, we bypass the inherent
synchronicity problems of the asynchronous model. We denote the player that
evaluates the circuit as the king, and all other players (who support the king) the
slaves. Note that every player acts (in parallel) once as king, and n times as slave,
once for every king. The kings are not synchronized among each other; it can
happen that one king has almost completed the evaluation of the circuit, while
another king is still at the very beginning. However, each slave is synchronized
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with his king. As soon as the first king completes the evaluation and provably
reveals all outputs, all other kings (and their slaves) can safely truncate their
own evaluation.

In order to achieve robustness, we must require every party to prove (in
zero-knowledge) the correctness of essentially every value she provides during
the protocol execution. These proofs could easily be constructed in the random-
oracle model (by using Fiat-Shamir heuristics), but this would be at the costs of
a non-standard model. We therefore follow another approach: A party who is to
prove some claim, proves this claim interactively to every other party. The verify-
ing party then certifies that she has correctly verified the claim. Once the prover
has collected enough such certificates, she can convince any third party non-
interactively of the validity of the claim. Technically, we use threshold signatures
for the certificates, which allows the prover to compute one short certificate that
proves that ts parties have verified his proof (recall that ts denotes the threshold
of the threshold signature scheme, and we set ts = n — t). Formally, we will say
that “a party P; constructs and sends a proof m; of «some claim»”, denoted as
m; = proof («<some claim>), when we mean that P; bilaterally proves the claim in
zero-knowledge to every party P;, who then, upon successful completion of the
proof, sends to P; a signature share .%j(<some claim»). After obtaining ts correct
signature shared] {mij}jer, party P; computes 7; as .7 («<some claim», {m; ;}jcr)-
Since this construction is standard, we omit the details from the description of
the protocols. Naturally, we do include the corresponding subprotocols and their
bit complexities in the analysis of the proposed solution (cf. Section B.8]).

Finally we note that we make use of threshold signatures also explicitly, as
specified in the descriptions of the protocols. Their use there has similar purpose,
namely as certificates for the validity of certain claims.

3.1 Main Protocol

The main protocol first invokes the input stage, then the evaluation stage, and
finally the termination stage. At the end of the input stage, the circuit Circ is
determined by the set of parties that provide input. In the evaluation stage,
every party starts one instance of the king protocol, and n instances of the slave
protocol — one for every king.

In order to precisely describe the new protocol, we first formally model the
circuit to be computed, and then give the invariant that is satisfied during the
whole computation. For the clarity of presentation we assume in the following
that every party provides at most one input value and that there is only one
final output value to be disclosed to all parties (i.e., the final output is to be
public). This is without loss of generality for the case with public outputs, and
protocols for the general case with multiple input/output values can be derived
by straightforward modifications. However, the issue of providing private outputs
is more involved, and we discuss it in Section [Tl

! The correctness of a signature share is proved to P; by P;, using another efficient
zero-knowledge protocol (cf. Sect. [Z4]).
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THE cIRCUIT. We assume that the function to be computed is given as a circuit
Circ over the plaintext space M of the homomorphic encryption scheme in use.
The circuit is a set of labeled gates, where each label is a unique bit-string
G € {0,1}*. We use G(Circ) to denote the set of all labels of the circuit Circ. In
the following we let v : G(Circ) — M U {L} be a map from the labels into the
the plaintext space, where v(G) denotes the value of the gate G. Fach gate is
represented by a tuple (G, ...), and can have one of the following types:

input gate: (G), consisting only of its label G = (P;,input), where v(G) is equal
to x;, the input value provided by player P;.

linear gate: (G,linear,ag,a1,G1,...,a;,G;), where | > 0, ag,...,a; € M are
constants, and v(G) = ag + Zé‘:l a; - v(Gj).

multiplication gate: (G, mul, G1,G2), where v(G) = v(Gy) - v(G3).

output gate: (G,output,G'), where v(G) = v(G’) is the output value of the cir-
cuit.

CORRECTNESS INVARIANT. Throughout the computation each party P; main-
tains a data structure containing the views of each party P; on the intermediate
values in the circuit. More precisely, P; holds a dictionary I7;, which for each
party P; maps labels G' to encryptions computed by the King FP;,

I; : [n] x G(Circ) - CU{L},

where initially I;(j,G) =L for all labels and all j € [n]. If I3(5,G) = C #1,
then from P;’s point of view gate G’ was completed by P;, and C' is a ciphertext
of the homomorphic encryption scheme of the value v(G). We say that C' is the
encryption of v(G) reported by P; to P;, and that P; has accepted C from P;.

The protocol guarantees, that if an honest party P; accepts a ciphertext C
reported by P;, then C is an encryption of a correct value for gate G. Moreover,
any two honest parties who accept an encryption of any party P, for a gate G
agree on the encryption. Formally, we have the following definition.

Definition 1 (Correctness Invariant). The following properties hold at any
point in the protocol:

1. (Agreement on circuit) There exists a set W C [n] such that |[W| > n —t
and such that for all honest parties having defined the circuit Circ; it holds
that Circ; = Circ(W).

2. (Agreement on input encryptions) For all pairs of honest parties P;, P;, and
allk,l,m € W it holds that if I (k, (P, input)) #L and I';(m, (P, input)) #.L,
then

Ii(k, (P, input)) = I';(m, (P, input)) := X .

Furthermore, if P, is honest then 2(X;) is the initial input x; of P,.

3. (Correct gate encryption) For every honest party P;, if for any G € Circ we
have that T;(i,G) = C #1, then 2(C) is identical to the value of gate G
obtained by decrypting the input encryptions held by P; and evaluating the
circuit on the plaintexts.
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4. (Agreement on encryptions of gates by same king) For every two honest
parties P; and P;, for any l € [n] and any G € Circ, if I;(I,G) = C #L and
Ij(1,G) =C" #L, then C = C".

This invariant is propagated from the initial input stage until the output stage
is reached. Hence, a threshold decryption of the encrypted output value is guar-
anteed to yield correct computation results.

THE BASIS OF THE CORRECTNESS INVARIANT. The correctness invariant is
established in the input stage, which determines the values of all input gates. Due
to the security properties of the input-stage protocol, these values are guaranteed
to be correct in the sense that the each party providing input knows the actual
value hidden in the encryption, and that this value is a valid input to the function
to be computed.

3.2 Input Stage

The goal of the input stage is to define an encryption of the input of each party.
To ensure independence of the inputs, the parties are required to prove plaintext
knowledge for their encryptions. In a synchronous network we could simply let
the parties broadcast their encryptions. However, in an asynchronous setting
with an active adversary we cannot guarantee that each party contributes an
input value, since it is impossible to distinguish between an honest slow party
and a corrupted party. Therefore a protocol is used which selects (n—t) so-called
mnput providers.

First, each party P; encrypts its input value x; to obtain a ciphertext X; =
&(x;), and constructs a proof m; = proof («P; knows the plaintext in X;») (using
bilateral zero-knowledge proofs and threshold signatures), which serves as a cer-
tificate that P; knows the encrypted value, and that X; is P;’s unique possible
input encryption to the circuit. Afterwards P; distributes (X, 7) to all parties,
and then constructs and distributes another certificate, a certificate of distribu-
tion cert;, stating that P; has distributed (X;, ;) to at least n — ¢ parties (recall
that n — ¢ is the threshold of the signature scheme).

When a party collects n —t certificates of distributions it knows that at least
n —t parties have their certified inputs distributed to at least n—t parties. So, at
least n —t parties had its certified input distributed to at least (n —t) —t > t+1
honest parties. So, if all honest parties echo the certified inputs they saw and
collect n — t echoes, then all honest parties will end up holding the certified
input of the n — t parties which had their certified inputs distributed to at least
t + 1 honest parties. These n — t parties will eventually be the input providers.
To determine who they are, n Byzantine agreements are run. The protocol for
selecting input providers is given in more detail in Figure [I

3.3 Computing Linear Gates

Due to the homomorphic property of encryption linear gates can be computed
locally, without interaction. That is, if a party P; has accepted P;’s encryptions
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To define an initial set of inputs, P; with initial input x; € M proceeds as follows:
Initialize empty sets A;, A;, B;, B;, C; and execute the following rules concurrently:

DOUBLE DISTRIBUTION:
1. compute X; := &(x;) and m; := proof («P; knows the plaintext in X,»).
2. send (X;,m;) to all parties.
3. collect n — ¢ signature shares {o;} on «X; is P;’s input>
(i.e., 05 = S5 (<X; is P;’s input»))
4. compute cert; = . (<X, is P;’s input>,{o;}); send (X;,cert;) to all parties.
5. collect n — t signature shares {o’;} on «I hold P;’s input>
6. compute cert; = .7 (<I hold P;’s inpub>, {O’;}); send cert} to all parties.
GRANT CERTIFICATE OF UNIQUENESS:
on the first msg. (X, m;) from Pj, with ¥ («P; knows the plaintext in X;», 7;)=1,
return o; = % (<X; is P;’s inpud>) to P;.
GRANT CERTIFICATE OF DISTRIBUTION:
on the first message (X, cert;) from P;, with ¥ (<X, is P;’s input>, cert;) = 1,
add j to A;, add (X, cert;) to A;, and return o := .7 (<[ hold P;’s input») to P;.
EcHO CERTIFICATE OF DISTRIBUTION:
on a message cert, where ¥ (<I hold P;’s input>, cert;) =1 and j & Ci,
add j to C, and send cert’; to all parties.
SELECT INPUT PROVIDERS:
When |C;| > n — t, stop executing the above rules and proceed as follows:
send (A;, A;) to all parties.
collect a set {(Aj, A;)}jes of (n —t) incoming, well-formed (A;, A;).
let B; :=J;c, A4 and Bi ==, ; A;
enter n Byzantine Agreements (BAs) with inputs v1,...,v, € {0,1},
where v; = 1iff j € B;.

- W=

ot

let wq, ..., w, denote the outputs of the BAs,

and let W= {je{1,...,n}w; =1}.

use W to generate a circuit Circ = Circ(W).

for each j € B; N W, send (X, cert;) € B; to all parties.

for each j € W wait to receive (Xj, cert;) with ¥ (<X is P;’s input>, cert;)=1.
forall j € W and ! € {1,...,n}, let I3(l, (P;,input)) = Xj.

© ® N

Fig. 1. The input stage code for P;

of inputs to a linear gate (G, linear, ag, G1,a1,...,G, a;), i.e. when I;(j, G,,) #L,
foru =1...1, then P; computes locally I5(j,G) := Ag® (@lu:l(aj - I (4, Gu)))7

where Ag is a “dummy” encryption of ag, computed using a publicly-known, fixed
random string.
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Wait until input stage is completed, resulting in a circuit Circ and an initialized dictio-
nary I'x. Then concurrently execute for each linear, multiplication, or output gate:

LINEAR GATE (G, linear, ap,a1,Gh,...,a;,G):
1. wait until I'x(k,Gy) #L, forallu=1...1
2. compute I'y(k,G) := Ao & (@Lzl(au - Ty (K, G“))> .
MULTIPLICATION GATE (G, mul,G1, G2):
1. wait until Fk(k,G1) = C1 75J_ and Fk(k,Gz) = CQ 7éJ_
2. generate a randomizer (R, U, cert) for G, and send it to all parties:
(a) collect a set Sq := {(Ri,Us, 04, i) Yicry, with |[Ig| >t + 1, where
o; = Sign, («(Rs, Us) : part of Py’s randomizer for G»), and
m; = proof,(«P; knows r; in R;, and U; is a randomization of r;C1»)
(b) send S¢ to all parties
(c) compute R:= €D, Ri, and U =P, Ui
(d) collect a set cert := {cert;};cy,,, with |I¢| > ts, where
cert; = S («(R,U) : Py’s randomizer for G»)
3. collect a set Vo = {(zi, ¢i) biery, with |I¢] > tp, where each z; is a decryption
share of P; for Z = Cy @ R, and ¢; is the corresponding validity proof
4. send Vg to all parties
5. decrypt z := 9(Z,Vg) and compute I'y(k,G) :=(z-C1)oU
OUTPUT GATE (G,output, G'):
1. wait until I'y(k,G") = C #L
2. collect a set {(c;,w;)} of tp decryption shares for C,
with corresponding validity proofs w;

3. compute and output ¢ := 2(C, {c¢;}); mark G as decrypted

Fig. 2. The code for king Py for evaluating the circuit

3.4 Computing Multiplication Gates

Computation of multiplication gates is more involved. Each king Py leads the
computation of the encrypted product in his copy of the circuit, that is, given a
gate (G, mul, Gy, G>) such that I'y(k,G)=L, I't(k,G1)=C4, and I (k, G2)=Cx,
with C1,Cs #1, the players proceed as follows. Let ¢1,co denote the values
hidden in the ciphertexts C7,Cs, respectively. First a randomizer (R, U, cert)
is generated, where R is a threshold encryption of a random element r € M
(unknown to the parties and the adversary), U = Z(rC4), i.e., U is a random
threshold encryption of rcq, and cert is a certificate of the encryptions’ correct-
ness. Then P sends the randomizer to all parties, and waits until the parties
answer with decryption shares of the ciphertext Z = Cy & R, which is an encryp-
tion of z = ¢y + 7. Once sufficiently many (i.e., at least ¢p) decryption shares
arrive, Py sends them to all parties, which allows each P; to decrypt z, and
compute an encryption of the product cjcs, using the homomorphic property of
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Wait until input stage is completed, resulting in a circuit Circ and an initialized dic-
tionary L. Then concurrently execute the following for each linear, multiplication, or
output gate:

LINEAR GATE (G, linear, ao,a1,G1,...,a;,G;) (only for i # k):
1. wait until I5(k,Gy) #L, forallu=1...1.

2. compute I';(k,G) := Ao & (@;leu - I (k, Gu))) .

MULTIPLICATION GATE (G, mul,G1,G2):
1. wait until Fi(k, G1) =4 #L and Fi(k, Gg) =(Cs #L
2. help to generate a randomizer (R, U, cert) for G:

(a) compute R; = &(r;) and U; = Z(r;C1) for a randomly picked r; € M
compute o; := Sign, («(Rs, U;) : part of Px’s randomizer for G»)
construct a proof
m; := proof ,(«P; knows r; in R;, and U; is a randomization of 1;C1»)

(b) send (R;,U;,0;,7;) to king Py

(c) wait until received from Py set

Sg = {(Rl, Ul,O'l,ﬂ'l)}leIG, with |IG| >t+1

(d) compute R := @ielc R;, and U := EBZ.EIG U;
compute cert; = % (<«(R,U) : Py’s randomizer for G»)

(e) send cert; to king Py

3. wait until received (R, U, cert) from Py,
with ¥ («(R,U) : Py’s randomizer for G>,cert) =1

4. compute z;, P;’s decryption share for Z = Co@ R, and ¢; = proof («<z; is valid>);
send (zi, ¢i) to Py

5. wait until received Vg from Py, with |Vg| >t +1

6. decrypt z := 9(Z,Vg) and compute I';(k,G) := (z-C1) U

OUTPUT GATE (G,output, G'):

1. wait until I;(k,G') = C #L

2. compute a decryption share ¢; := 2;(C') and a proof ww; = proof(«¢; is valid»);
send (¢;, w;) to Py

Fig. 3. The code for slave P; helping king Py to evaluate the circuit

the encryption, and the fact that ¢ico = (¢g 4+ r)c; — rey. That is, P; computes

Li(k,G) = (- C1) o U.

3.5 Output Stage

When P; notices that the computation of an output gate (G, output, G’) is com-
pleted by some king Py (i.e. I;(k,G) = C #.1), but the gate has not been
decrypted so far, then P; sends a decryption share ¢; of C' to Py along with a
proof that the decryption share is correct. Then P collects enough decryption
shares, and computes the value of the output gate.



Cryptographic Asynchronous Multi-party Computation 335

During the protocol each party executes concurrently the following rules:

RULE 1:
1. wait until the output gate G € G(C) is marked decrypted

2. vote by sending the value of the gate to all parties

RULE 2:
1. wait until receiving t + 1 identical votes for the value of the output gate

2. adopt the value receiving t + 1 votes
3. mark the output gate G € G(C) as decrypted

1. wait until receiving n — t identical votes for the value of the output gate

2. terminate

Fig. 4. The code for terminating P;

3.6 Termination

As described above each king Py will eventually learn the value of the output
gate. This however requires that each slave P; keeps running after king Py learned
the output values. To allow to also terminate the slaves, the parties execute a
termination protocol. When king P}, learns the output of the circuit it outputs
it and echos the result to all parties as its wvote for the output (and does not
yet terminate slave Py). Since all honest parties compute identical outputs and
there are at most ¢ corrupted parties, if a party receives ¢t 4+ 1 identical votes for
some output value it can safely adopt this value as its own output, terminate
its own king, and then echo the adopted output value. When a party receives
(n — t) identical votes for the output value it terminates the protocol. This
is essentially a Bracha broadcast of the output value and allows all parties to
eventually terminate.

3.7 Security Analysis

Our protocol can be proved secure in the model described in Section[2 A formal
proof that the protocol can be simulated can be given along the lines of the proof
in [CDNOI1], using the following helping lemmas.

Lemma 1 (The correctness invariant). The Properties 1, 2, 8 and j of
Definition [ hold at any point in the protocol if there are at most t < n/3
corrupted parties.

Lemma 2 (Termination). If all honest parties start running the protocol and
there are at most t < n/3 corrupted parties, then all honest parties will eventu-
ally terminate the protocol.

The proofs of the lemmas are given in the full version of the paper [HNP04]. Here
we discuss how the lemmas allow to give a proof along the lines of [CDNOT].
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By property 1 a set of at least n — ¢t parties have their inputs considered, as
required by the model in Section 2l Furthermore, by Property 3, the output v;
obtained by P; when decrypting the output ciphertext in Step 3 in OUTPUT GATE
in Fig. @l will be correctly defined from the plaintexts of the input ciphertexts
held by P;. Since by Property 2 the parties agree on the input ciphertexts, all
honest parties P; will agree on the output v; in Step 3 in OUTPUT GATE. This
clearly implies that all honest parties terminate the protocol in Fig. @] with the
output being the common value v, as no other value can get t + 1 votes when
there are at most ¢ corrupted parties. Since v is the result of evaluating the
circuit on the plaintexts of the input ciphertexts and, by Property 2, the input
ciphertext X; of honest party P, contains the correct input x;, the result v can
indeed be obtained by restricting the set of input providers to a set of size at
least n — t and then changing only the inputs of the corrupted parties.

The privacy of the protocol (formally defined by the simulator only being
given the inputs of the corrupted parties in the simulation) mainly follows from
the fact that all inputs are encrypted using a semantic secure encryption scheme
and that all proofs are zero-knowledge. So, the only knowledge leaked about the
inputs of the honest parties is through decryptions of ciphertexts.

The decryptions take place only in Step 4 in MULTIPLICATION in Fig. Bl and
in Step 2 in oUTPUT GATE in Fig. Bl By the correctness of the protocol the
knowledge leaked in Step 2 in OUTPUT GATE is the result of the computation,
which is allowed to leak by the model. So it remains to argue that no knowledge is
leaked in Step 4 in MULTIPLICATION. To see this, observe that the value revealed
by the decryption in Step 4 is z = c3 + >, 1., Ti» which holds the potential
of leaking knowledge about co (which is potentially to be kept secret). Since
each term 7; from an honest party is chosen uniformly at random and all r;
are chosen independently (this is the purpose of having all parties, in particular
the corrupted parties, prove plaintext knowledge of their r; in Step 2(a)), it is
sufficient to show that each revealed value z = ¢y + Zz‘e 1o Ti contains at least
one honest value r; which did not enter another revealed value.

Observe first of all that since |I¢| > t+1, at least one r; came from an honest
party. Observe then that each of the randomizers r; are associated uniquely to
one (Py, G) by the signature o; (issued in Step 2(a) and checked in Step 2(c)).
Therefore 7; only enters values z = c + ), 1. i leaked in decryptions in Step
4 in MULTIPLICATION for the specific (Py,G) in consideration. It is therefore
sufficient to show that for each (P, G) there is only one value z = co+ > ;. 73
for which knowledge is leaked. This follows from the uniqueness guaranteed
by the threshold ts = n — ¢ of the threshold signatures. More precisely, as-
sume that for each king Py and each gate G at most one value of the form
« 1 Py’s randomizer for G» is signed. ILe. there exists at most one value (R, U) for
which there exists cert such that ¥ («(R,U) : Py ’s randomizer for G», cert) = 1
(this can be seen to be necessary for Property 4 to hold and thus follows from
Lemma [T]). Since the honest parties agree on the gate encryptions of Py (by
Property 4), this implies that there is at most one value Z = Cy @ R for which
honest parties issue decryption shares in Step 4 for a given choice of (P, Q).



Cryptographic Asynchronous Multi-party Computation 337

Therefore each value z = ca + ), 1. Ti on which knowledge is leaked through
decryption shares from honest parties, at least one r; came from an honest party
and did not enter another value on which knowledge was leaked, as desired.

3.8 Efficiency Analysis

In this section we consider the communication complexity of the protocol. We
omit computational complexity from the analysis, since it is clearly polynomial,
and the bottleneck of distributed computing is in the communication overhead.
For completeness, we consider the case where each party can have more than one
input, and we denote by c¢; the total number of input gates. For clarity we use
K =n to denote the number of kings and S=n to denote the number of slaves.

In the protocol in Fig. I when each party has more than one input, X; will
simply be the vector of input encryptions. Assuming that all encryptions, all
signature shares, all signatures and all pairwise proofs use communication O(k)
and that the communication complexity of a Byzantine agreement is O(n’k),
it can be seen using simple counting that the communication complexity of the
protocol in Fig. Mis O(crn?k + n’k).

In king’s protocol (Fig.[l) the only values sent are the sets Si and V. These
sets have size O(nk) and are sent to all S slaves. This gives a communication com-
plexity of O(Snk) each time a set is sent, or a total communication complexity
of O((epr + co)Snk) for running the protocol in Fig. 2 where ¢)/ is the number
of multiplication gates and co is the number of output gates. This is done by all
K kings, yielding a total communication complexity of O((epr 4+ co) K Snk).

In slave’s protocol (Fig. B) the sending of the values in Steps 2(b), 2(e) and
4 of MULTIPLICATION GATE, and Step 2 of OUTPUT GATE all use O(k) bits of
communication. Moreover, the constructions of the proofs in Steps 2(a) and 4
of MULTIPLICATION GATE, and in Step 2 of OUTPUT GATE takes O(nk) bits of
communication, and thus are the dominating instructions. Each construction of
a proof is done at most once for each gate for each king being helped. This
yields a total of O((cpr + co)Knk) for running the slave’s protocol. Since the
protocol is run by all S slaves, this yields a total communication complexity of
O((CM + Co)KSnI{).

It is easy to verify that the total communication complexity of the protocol
in Fig. @is O(con’k).

Summing the above terms we get a communication complexity of O((c; +
co)n’k + (car + co)KSnk +n3k). Using K = S = n and assuming that co > 1,
this is O(ern?k + (cp + co)n’k), as claimed.

4 Extensions and Applications

4.1 Computing Functions with Private Outputs

The description of the new protocol in Section [3 only considers public outputs,
i.e., every party learns the output(s) of the circuit. In the following, we present
an extension that allows for outputs that are delivered only to an authorized
party, say P;.
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The intuition of the protocol is that the decryption shares are not sent to
the king, but rather directly to P;. Every decryption share must go along with a
proof of validity. This proof must not be interactive with P; (the parties cannot
wait for messages of P;), and the proof must not be given to other parties (this
would violate the privacy of the output protocol). Therefore, we have every slave
P; blind his decryption share ¢; with a random value r;, i.e., ¢, = ¢; +r;, encrypt
r; with randomness p;, i.e., R; = &(ry, pi), and prove interactively towards every
auxiliary player P; knowledge of r; such that r; encrypts to R; and ¢, —r; is a
valid decryption share. Upon accepting the proof, every auxiliary player hands
a signature share for «(c, R;) is a good decryption share for slave P;» to P;, who
then sends ¢}, r;, p; to P;. Given this information from at least n — ¢ players, P;
picks the valid decryption shares and decrypts his private output.

We note that a similar technique has been recently used by Schoenmakers

and Tuyls [ST04].

4.2 A Hybrid Model: Asynchronous Network with Few
Synchronization Rounds

A fully asynchronous MPC protocol inherently cannot consider the input of ev-
ery honest party; once n — t inputs are ready, the protocol must start. This is a
serious drawback which makes the fully asynchronous model unusable for many
real-world applications. We show that with a single round of synchronization,
we can consider the input of every honest party. This model seems very reason-
able in real-world; the parties would wait for other parties to have their input
ready, and if not, use other means of communication (email, phone, fax, etc)
to synchronize. However, the MPC protocol itself should run asynchronously
to comply with the properties of existing networks, namely that the delay of
messages is hard to predict. Note that asynchronous protocols can be looked as
“best effort” protocols where the progress in the protocol is as fast as possible
with the available network, in contrast to synchronous protocols whose progress
is limited by the assumed worst-case delay of the network.

The necessary changes in the input protocol (cf. Fig. [I) are minimal: Every
player P; moves to the last stage (SELECT INPUT PROVIDERS) only when either
|C;i| = n, or the synchronization round elapsed.

4.3 Non-robust Computations

In the proposed protocol, robustness is guaranteed by having each party act
as king, who evaluates the whole circuit on his own (with help of his slaves).
This means that the computation and communication overhead for achieving
robustness is a factor of n.

Goldwasser and Lindell have proposed a model for secure MPC in which
output delivery is not guaranteed [GL02|, unless some a priori specified party
is honest. In this model, we can improve the communication complexity of our
protocol by a factor of n, simply be letting this designated party act as king, and
all other parties act as his slaves. We stress that the protocol still guarantees
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privacy and correctness of the computation, but termination (with output de-
livery) can only be guaranteed when the king is honest. This simplified protocol
achieves an overall communication complexity of O(cn?k) for a circuit of size c
and a security parameter k.

5 Conclusions

We have proposed a secure multi-party computation protocol which substantially
puts forward both theory and practice in this field. From a theoretical point of
view, the protocol is optimally resilient, fully asynchronous, and has an asymp-
totically lower communication complexity than any previous asynchronous MPC
protocol. Indeed, the protocol is as efficient as the most efficient known proto-
col for synchronous communication. Furthermore, the protocol requires very few
invocations of the broadcast primitive (independent of the size of the computed
circuit).

From a practical point of view, the new protocol is designed for real-world
networks with unknown message delay, allows every party to provide his input
under a very reasonable assumption (one round of synchronization), and achieves
best-possible resilience against cheating (up to a third of the parties may misbe-
have). Furthermore, the protocol is very efficient, the constant communication
overhead is minimal. The effective computation of the circuit takes less than
10n3k bits of communication per multiplication, which makes the protocol ap-
plicable for reasonably sized circuits among small sets of parties. The key set-up
(for the threshold decryption and threshold signatures) is more communication-
intensive; however, this can be performed long in advance.
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