A Preliminary Comparative Feature Analysis of
Multi-agent Systems Development Methodologies

Quynh-Nhu Numi Tran', Graham Low', Mary-Anne Williams®

"' School of Information Systems, Technology and Management

The University of New South Wales
New South Wales, Australia

{numitran, g.low}@unsw.edu.au

? Innovation and Technology Research Laboratory
Faculty of Information Technology, University of Technology Sydney

New South Wales, Australia
Mary-Anne@it.uts.edu.au

Abstract. While there are a considerable number of software engineering
methodologies for developing multi-agent systems, not much work has been re-
ported on the evaluation and comparison of these methodologies. This paper
presents a comparative analysis of five well-known MAS-development meth-
odologies. The comparison is based on a feature analysis framework published
previously [1]. This framework allows the comparative analysis to be made on a
variety of evaluation criteria, covering both agent-oriented aspects and system
engineering dimensions. The analysis also compares the methodologies in terms
of their support for the steps in the development process, and for agent-oriented
concept modeling.

1 Introduction

Compared to the preceding efforts in system engineering such as object-oriented (OO)
paradigm, the work in agent-oriented (AO) system engineering is still under-
developed. However, with the rapid growth and promise of the agent technology, a
number of methodologies for developing MAS (denoted as “MAS methodologies™)
have been proposed in recent years. This has in turn led to the need to evaluate and
compare them, thereby noting their strengths and weaknesses, and determining which
methodology to use in a particular application.

In a previous publication, we have proposed an evaluation framework for assessing
MAS methodologies [1]. Based on the feature analysis approach, this framework pro-
vides a list of evaluation criteria or methodological features to be used as yardsticks to
assess MAS methodologies from different dimensions and aspects. This paper pres-
ents an application of this framework to five well-known MAS methodologies:
MASE [2], GAIA [3][4], methodology for systems of BDI agents [5], Prometheus [6],

In Proceedings of the 6" International Bi-Conference Workshop on Agent-Oriented Information Systems
(AOIS-2004)
Copyright © 2004 Springer-Verlag

and MAS-CommonKADS [7]. The objective is to obtain a comparative analysis of
the five methodologies, rather than a detailed analysis of each.

The remainder of the paper is organized as follows: section 2 provides an overview
of the feature analysis framework while section 3 gives a summarized description of
the five MAS methodologies. We present the comparative analysis in section 4, and
some conclusions and perspectives in section 5.

2 Feature Analysis Framework

The framework proposed in [1] was developed from the synthesis of various existing
feature analysis frameworks, including those for evaluating conventional system de-
velopment methodologies — namely [8], [9], [10] and [11], and those for evaluating
MAS methodologies — namely [12], [13], [14] and [15]. The framework therefore im-
proves on the existing work by extensively assessing both agent-specific (or MAS
specific) and generic system engineering dimensions. It also pays attention to all three
major components of a system development methodology — i.e. process, techniques
and models. The framework’s evaluation criteria are considered representative, case-
generic, and centered on the capabilities and usefulness of a MAS methodology.
The structure of the framework is shown in figure 1. It is comprised of four com-
ponents [1]:
e Process Related Criteria: 15 criteria that assess a methodology’s support for the
MAS-development process.
e Technique Related Criteria: 5 criteria that examine the methodology’s techniques
to develop MAS.
e Model Related Criteria: 22 criteria that evaluate the capabilities of the methodol-
ogy’s models.
e Supportive Feature Criteria: § criteria that evaluate various high-level methodo-
logical capabilities.

| Feature Analysis Framework |

Process Related 4/‘/ \A\L Supportive Feature

Criteria Technique Related | | Model Related Criteria
Criteria Criteria

Fig. 1. Structure of the adopted feature analysis framework

Each criterion in the framework is accompanied by an evaluation question (Table 1).
Two criteria, “Steps in the development process” (in Process Related Criteria) and
“Concepts” (in Model Related Criteria), which respectively examine the development
steps supported by a MAS methodology, and the concepts that the methodology’s
models are capable of expressing, require a more comprehensive assessment. Tran et
al. [1] proposed a list of “standard” process steps and concepts that serve as a check-
list for this assessment (Tables 3 and 4).

Table 1. Feature analysis framework for evaluating MAS-development methodologies [1]

Process Related Criteria

1. Development lifecycle: What development lifecycle best describes the methodology (e.g. waterfall)?

2. Coverage of the lifecycle: What phases of the lifecycle are covered by the methodology (e.g. analy-
sis, design, implementation...)?

3. Development perspective: What development perspective is supported (i.e. top-down, bottom-up, or
hybrid)?

4. Application domain: Is the methodology applicable to a specific or multiple application domains?

5. Size of MAS: What size of MAS is the methodology suited for?

6. Agent nature: Does the methodology support agents of any type (i.e. heterogeneous agents), or of a
particular type (i.e. homogeneous agents)?

7. Support for verification: Does the methodology contain rules to allow for the verification and vali-
dation of correctness of developed models and specifications?

8. Steps in the development process: What development steps are supported by the methodology?

9. Notational components: What models and diagrams are generated from each process step?

10. Comments on the overall strengths/weaknesses of each step: This criterion allows the evaluator to
record any comments on a process step that cannot be recorded anywhere else.

11. Ease of understanding of the process steps: Are the process steps easy to understand?

12. Usability of the methodology: Are the process steps easy to follow?

13. Definition of inputs and outputs: Are inputs and outputs to each process step defined, with possible
examples?

14. Refinability: Do the process steps provide a clear path for refining the methodology’s models through
gradual stages to reach an implementation, or at least for clearly connecting the implementation level
to the design specification?

15. Approach towards MAS development: what is the methodology’s

a. Generic MAS development approach (e.g. OO-based or knowledge-engineering based)?
b. Approach towards using “role” in MAS development?
c. Approach in role identification, if the methodology uses “role” in MAS development?

Technique Related Criteria

16. Availability of techniques and heuristics:
a. What are the techniques to perform each process step?
b. What are the techniques to produce each notational component (i.e. modeling techniques)?
17. Comments on the strengths/weaknesses of the techniques: This criterion allows the evaluator to re-
cord any comments on the techniques to perform each step or to produce each model.
18. Ease of understanding of techniques: Are the techniques easy to understand?
19. Usability of techniques: Are the techniques easy to follow?
20. Provision of examples and heuristics: Are examples and heuristics of the techniques provided?

Model Related Criteria

21. Concepts: What concepts are the methodology’s models capable of expressing?
22.Expressiveness: How well can each model express these concepts? (e.g. is each model capable of
capturing the concept at a great level of detail, or from different angles?)
23.Completeness: Are all necessary agent-oriented concepts that describe the target MAS captured by
the methodology’s models?
24.Formalization/Preciseness of models: Are notation (syntax) and semantics of models clearly de-
fined?
25.Model derivation: Does there exist explicit process/logic and guidelines for transforming models into
other models, or partially creating a model from information present in another?
26. Consistency:
a. Are there rules and guidelines to ensure consistency between levels of abstractions within each
model (i.e. internal consistency), and between different models?
b. Are representations expressed in a manner that allows for consistency checking between them?
27. Complexity: is there a manageable number of concepts expressed in each model/diagram?
28. Ease of understanding of models: Are the models easy to understand?
29. Modularity: Does the methodology and its models provide support for modularity of agents?
30. Abstraction: Does the methodology allow for producing models at various levels of detail and ab-
straction?
31. Autonomy: Can the models support and represent the autonomous feature of agents (i.e. the ability to

act without direct intervention of humans or others, and to control their own states and behaviours)?

32. Adaptability: Can the models support and represent the adaptability feature of agents (i.e. the ability
to learn and improve with experience)?

33. Cooperative behavior: Can the models support and represent the cooperative behavior of agents (i.e.
the ability to work together with other agents to achieve a common goal)?

34.Inferential capability: Can the models support and represent the inferential capability feature of
agents (i.e. the ability to act on abstract task specifications)?

35. Communication ability: Can the models support and represent “knowledge-level” communication
ability (i.e. the ability to communicate with other agents using language resembling human-like
speech acts)?

36. Personality: Can the models support and represent the personality of agents (i.e. the ability to mani-
fest attributes of a “believable” human character)?

37.Reactivity: Can the models support and represent reactivity of agents (i.e. the ability to selectively
sense and act)?

38. Temporal continuity: Can the models support and represent temporal continuity of agents (i.e. per-
sistence of identity and state over long periods of time)?

39. Deliberative behavior: Can the models support and represent deliberative behavior of agents (i.e. the
ability to decide in a deliberation, or proactiveness)?

40. Concurrency: Does the methodology allow for producing models to capture concurrency (e.g. repre-
sentation of concurrent processes and synchronization of concurrent processes)?

41. Human Computer Interaction: Do the models represent human users and the user interface?

42.Models Reuse: Does the methodology provide, or make it possible to use, a library of reusable mod-
els?

Supportive Feature Criteria

43. Software and methodological support: Is the methodology supported by tools and libraries (e.g. li-
braries of agents, agent components, organizations, architectures and technical support)?

44. Open systems and scalability: Does the methodology provide support for open systems and scalabil-
ity (e.g. the methodology allows for dynamic integration/removal of new agents/resources)?

45.Dynamic structure: Does the methodology provide support for dynamic structure? (i.e. the method-
ology allows for dynamic reconfiguration of the system)?

46. Agility and robustness: Does the methodology provide support for agility and robustness (e.g. the
methodology captures normal processing and exception processing, provides techniques to analyze
system performance for all configurations, or provides techniques to detect/recover from failures)?

47.Support for conventional objects: Does the methodology cater for the use/integration of ordinary
objects in MAS (e.g. the methodology models the agents’ interfaces with objects)?

48. Support for mobile agents: Does the methodology cater for the use/integration of mobile agents in
MAS (e.g. the methodology models which/when/how agent should be mobile)?

49. Support for self-interested agents: Does the methodology provide support for MAS with self-
interest agents (whose goals may be independent or enter in conflict with other agents’ goals)?

50. Support for ontology: Does the methodology cater for the use/integration of ontology in MAS (i.e.
ontology-driven agent systems)?

3 MAS Development Methodologies

The five MAS methodologies selected for the comparative analysis are considered the
most comprehensive, widely referenced, and well documented AO software engi-
neering methodologies compared to other existing work. Each of these methodologies
offers a set of steps, techniques, and/or models for the analysis and design of MAS.

Multiagent Systems Engineering - MaSE [2]

This methodology has been applied to numerous graduate-level and research projects.
Its process steps include identifying and organizing system goals, distilling use cases
and elaborating them into sequence diagrams, identifying roles, identifying agent

classes from roles, defining inter-agent conversations, designing agent internals, and
specifying MAS deployment details.

The GAIA methodology [3][4]

GAIA adopts an organization-oriented approach towards MAS development. Its
Analysis phase develops four major models: Preliminary Role Model, Preliminary
Interaction Model, Environment Model (which describes MAS environment in terms
of abstract resources), and Organizational Rule Model (which specifies rules that af-
fect the whole MAS).

The design phase then transforms these models into sufficiently low-level abstrac-
tions, including Complete Role and Interaction Models, Organizational Structure
Model, Agent Model, Service Model (which specifies the services offered by each
agent), and Acquaintance Model.

Methodology for BDI agents — BDIM [5]

This methodology classifies models into external or internal levels. External models
represent a system-level view of the system, and include Agent and Interaction Mod-
els. At the internal level, each model describes an abstract internal component of the
agent, including Belief Model, Goal Model, and Plan Model.

The Prometheus methodology [6]

Prometheus aims to provide a detailed, complete methodology for developing MAS

with BDI-like agents. It consists of three phases:

o System specification: identifies the basic functionalities, percepts, actions, and use
case scenarios of the target MAS;

o Architectural design: identifies agents, events, interactions, and shared data ob-
jects; and

o Detailed design: designs the internals of each agent. Each agent is composed of
“capabilities”, which are in turn made up of lower-level capabilities, plans, internal
events, and data.

The MAS-CommonKADS methodology [7]

This methodology also extends from CommonKADS, although it takes advantage of

many OO techniques. The guidelines for constructing each model are summarized as

follows:

o Agent Model: Agents are identified using use cases, problem statements, RDD and
CRC techniques.

o Task Model: Tasks are identified and decomposed as in CoMoMAS functional
analysis.

e Coordination Model: Agent interactions are identified from use case scenarios.
Coordination protocols are described by Event Flow Diagrams, State Transition
Diagrams, and Message Sequence Charts.

e Expertise Model: Different types of agent knowledge (e.g. domain knowledge, task
knowledge, inference knowledge, and problem-solving methods) are specified.

e Organization Model: MAS organization is described in terms of agent aggregation
and inheritance.

e Design Model: Infrastructure facilities, agent architecture, software and hardware
required for MAS implementation are specified.

4 Comparative Analysis

Using the feature analysis framework of Tran et al. [1], the comparative analysis of
the above MAS methodologies was performed for Process Related, Model Related,
and Supportive Feature Criteria. The evaluation of Technique Related Criteria is not
presented in this paper, as it entails an in-depth analytical discussion of each method-
ology, which is most relevant when the developer has decided on which particular
methodology to use, or is choosing between a small number of methodologies that
provide the same or similar process steps (thus requiring an investigation of tech-
niques to determine which method is the best in performing these common steps for a
particular application). An in-depth comparison of MAS methodologies’ techniques
will be presented in a future paper. Criteria 9, 10, 13, 22, and 27 are also not pre-
sented in this paper for the same reason. Criteria “Steps in the development process”
and “Concepts represented by MAS models” will each be analyzed separately because
each requires an extensive assessment.

Process-Related Analysis (Table 2)

Apart from BDIM which does not explicitly specify its lifecycle model, the other
MAS methodologies adopt an iterative, incremental SDLC for their MAS develop-
ment. The documentation of BDIM [5] actually does reveal the need for iterative re-
finements for its models (specifically, the refinement of internal models like Belief,
Goal, and Plan Models feeds back to the external models such as Agent and Interac-
tion Models, and vice versa). All methodologies cover only the Analysis (A) and De-
sign (D) phases of SDLC, except for MAS-CommonKADS that touches on the issues
of conceptualization (C) phases.

With regard to the development perspective, GAIA and MASE are top-down (TD),
Prometheus is bottom-up (BU), while BDIM and MAS-CommonKADS are hybrid
(H). We define an AOSE methodology as top down if it starts from the analysis of
high-level elements such as system goals, major functionality, problem statement, and
organizational structure and proceeds to identifying and designing agents as system
components that realize these elements. In contrast, a bottom-up AOSE methodology
begins by analyzing low-level behaviours or tasks of the system, which are then pack-
aged to compose agents. A hybrid (H) approach integrates both approaches by identi-
fying agents from the consideration of both high-level system goals/organization, and
low-level system tasks and responsibilities.

Most MAS methodologies are suitable to all types of application domains and het-
erogeneous agents, except for BDIM and Prometheus which target BDI-like agents.
MaSE and Prometheus are considered supportive of the verification and validation
process, since they provide rules or guidelines to assist the system developers in veri-
fying and validating the developed models. For example, Prometheus suggests that a

good MAS design will have a minimal number of shared data objects captured in its

System Overview Diagram. MaSE, Prometheus and MAS-CommonKADS are also

perceived to be easier to understand and to follow than GAIA and BDIM, thanks to

their detailed instructions on the development process and on each process step. All
methodologies provide a clear path for refining their models through gradual stages to
reach an implementation (or at least for clearly connecting the implementation level
to the design specification).

With regard to the approaches towards MAS development, our assessment is per-
formed on three categories of approaches:

e Generic approach: including OO-based approach and Knowledge-Engineering
(KE) based approach. The former either adapts or extends OO models and tech-
niques, while the latter builds upon techniques from knowledge engineering [22].

o The use of “role”: A MAS methodology can be role-oriented (RO), i.e. using
“roles” as the main abstraction for MAS analysis and design, or non-role-oriented
(NRO), i.e. relying on other constructs such as use cases, enterprise/workflow
models, and interactions to develop agents and MAS.

e Approach in role identification: If a methodology is role-oriented, it can identify
roles in the system by following a goal-oriented analysis approach (GO), behavior-
oriented analysis approach (BO), or organisation-oriented analysis approach.

The five investigated MAS methodologies can demonstrate the adoption of all of the

above approaches, except for the behavior-oriented analysis approach for role identi-

fication.

Model-Related Analysis (Table 2)

Compared to other MAS methodologies, MAS-CommonKADS can capture and rep-
resent the highest number and the most diverse AO concepts (i.e. criterion “Com-
pleteness”) thanks to its comprehensive set of models. All five methodologies offer
detailed explanations on their models’ notation and semantics, except for MAS-
CommonKADS which does not provide any notation for its Design model (i.e. crite-
rion “Formalization/Preciseness”). All methodologies, except for MAS-
CommonKADs, offer steps and related techniques to support the transforming of
models into other models (i.e. “Model Derivation” criterion).

“Consistency” criterion is assessed in terms of two questions:

e whether there are rules and guidelines to ensure consistency between levels of ab-
stractions of a model/diagram or between different models/diagrams; and

e whether the models/diagrams are expressed in a manner that allows for consistency
checking between them

As shown in Table 2, methodologies that offer the highest support for consistency
assurance are MaSE and Prometheus. All methodologies however encourage their
models to be developed at various levels of details and abstractions (i.e. “Abstraction”
criterion).

Agent characteristics that all five MAS methodologies can support and model are
modularity, autonomy, agent cooperative behavior, “knowledge-level” communica-
tion ability, reactivity, and deliberative behavior. This finding is desirable, consider-
ing the significance of these constructs in MAS analysis and design. Constructs that

most methodologies overlook are agent adaptability, agent personality, agent temporal
continuity, concurrency, and sub-system interactions.

All five methodologies make it possible to reuse the developed models, e.g. Ex-
pertise Models of MAS-CommonKADS can be reused by agents with similar task in-
ference requirements [7].

Supportive Feature Analysis (Table 2)

The five investigated methodologies appear to focus merely on the development of
typical, simple MASs, without paying much attention to add-on capabilities of MAS
such as openness/scalability, software tool, agility and robustness. No methodologies
address the use of mobile agents in MAS. Only GAIA explicitly supports the devel-
opment of MASs with self-interested agents!. Despite of its significance in MAS de-
sign and operation, ontology is not supported nor used by most MAS methodologies.
Only MAS-CommonKADS briefly involves ontology in its development process,
particularly in the modeling of agent “domain knowledge”. It also acknowledges that
ontology servers should be part of the infrastructure facilities to be designed for the
agent network.

Support for Steps in the Development Process (Table 3)
The list of standard MAS-development steps proposed by [1] is used as a checklist to
compare the five MAS methodologies. The support of each methodology for each
step is assessed on a 4-point scale:

0: no support is provided

1: the step is included but no techniques or examples are provided

2A: the methodology provides techniques for performing the step

2B: the methodology provides examples of how the step can be performed

3: the step is discussed with techniques and examples
This scheme of rating allows us to indirectly assess and compare the provision of
techniques and heuristics by the methodologies. Methodologies that are most com-
plete in terms of their support for the development steps are MaSE, Prometheus, and
MAS-CommonKADS.

Support for Concepts of MAS Models (Table 4)

We will use the list of standard MAS concepts proposed by [1] to compare the five
MAS methodologies. If a MAS methodology can represent or capture a concept in its
models, we can simply give it a tick v'.

Most concepts in the categories of “problem domain”, “agent properties”, “agent
relationships”, and “agent interactions” are supported by most MAS methodologies.
However, “deployment” concepts are overlooked by most methodologies, indicating
their lack of support for MAS deployment issues.

! This issue is addressed in the updated version of GAIA [4]

Table 2. Comparative analysis results

Evaluation Criteria MaSE GAIA ‘ BDIM | Prometheus MAS-
CommonKADS

Process Related Criteria

Iterative Iterative Not speci- Iterative Risk-driven &
Development Lifecycle across all across all fied across all component-based

phases phases phases
Coverage A&D A&D A&D A&D C,A&D
Development approach TD TD H BU H
Application Domain Any Any Any Any Any
Size of MAS < 10 agents < 100 agents Spi\iﬁge d Not specified Not specified
Agent Nature Hete. Hete. BDI agents BDI agents Hete.
Support for verification Yes No No Yes Briefly mentioned
Ease of understanding High High High High High
of process steps

High, except | Medium. Medium,
Usability of the method- | o internal | Missing - Lack of de- , .
ology agent mod- | many im- talledA in- High High

eling. portant steps structions for

each step

Refinability Yes Yes Yes Yes Yes

e 00 e 00 e 00 e 00 e KE
‘;e"vlgt‘)’;;:‘e;‘;wards MAS | RO « RO « RO « NRO « NRO

e GO e 00 e N/A o N/A o N/A
Model Related Criteria
Completeness High Medium Medium High High
Formalization/ High High High High Low
Model derivation Yes Yes Yes Yes No
Ease of understanding High High High High Medium
Consistency e Yes e Yes e No e Yes e No

* Yes * Yes * Yes * Yes * Yes
Modularity Yes Yes Yes Yes Yes
Abstraction Yes Yes Yes Yes Yes
Autonomy Yes Yes Yes Yes Yes
Adaptability No No No No No
Cooperative behaviour Yes Yes Yes Yes Yes
Inferential capability Yes No Yes Yes Yes
Communication ability Yes No Yes Yes Yes
Personality No No No No No
Reactivity Yes Yes Yes Yes Yes
Deliberative behavior Yes Yes Yes Yes Yes
Temporal continuity No No No No No
Concurrency Yes No No No No
Human Computer In- No No No Yes Yes
teraction
Models Reuse Yes Yes Yes Yes Yes
Supportive Feature Criteria
Sof.tware and methodo- Yes No No Yes No
logical support
Op.e.n systems and scal- No Yes No No No
ability
Dynamic structure No Yes No No No
Agility and robustness No No No Yes No
S.upport for conven- No No No Yes No
tional objects
Support for mobile No No No No No
agents
?upport for self- No Yes No No No
interested agents
Support for ontology No No No No Yes

Table 3. Comparative analysis on support for steps in the development process

= > = E g »
Steps E ;
@ >
Z
Problem Domain Analysis
Identify system goals 3 0 0 0 0
Identify system roles 3 3 2A 0 0
Identify system functionality/tasks 3 3 1 3 2A
Develop use cases/scenarios 3 0 0 3 2B
Produce sequence diagrams 3 0 0 0 2B
Identify design requirements 0 0 0 0 0
Identify agent classes 3 3 3 3 3
Agent Interaction Design
Specify agent interaction pathways 3 3 2A 3 3
Define exchanged messages 3 0 0 1 2B
Specify interaction protocols 3 0 0 3 3
Specify contracts/commitments 0 0 0 0 0
Specify conflict resolution mechanisms 0 0 0 0 0
Specify coordination/control regime (e.g. centralized or hierarchical) 1 0 0 0 0
Specify agent communication language 0 0 0 0 0
Agent Internal Design
Define agent architecture 3 0 0 0 1
Define agent mental attributes (e.g. goals, beliefs, plans...) 0 0 3 3 3
Define agent behavioral interface (e.g. capabilities, services) 0 3 3 3 0
System/Envir t Design
Define system architecture/organisational structure 0 0 0 0 0
Specify dynamic agent group formulation / dissolution 0 0 0 0 0
Specify agent relationships (e.g. inheritance, aggregation & association) 0 3 3 0 2B
Specify co-existing non-agent entities 0 3 0 2A 0
Specify infrastructure/environment facilities 0 0 0 0 1
Specify agent-environment interaction mechanism 0 0 0 3 1
Instantiate agent classes 3 1 3 0 0
Specify agent instances location 3 0 0 0 0

Table 4. Comparative analysis on support for concepts of MAS models

Concepts

HASEIN

VIVD

WIdd
SNAYIIWOLJ
sa@v>uowwo)
-SVIA

Problem Domain

System goals

System roles

System functionality/Tasks

ANANENEN
NANEN
<
<

Task responsibilities/Procedures

Design requirements

<
<
<

Use case/Scenarios

Agent Properties

Agent classes

Agent instances (including cardinality)

Agent’s roles

ANANENEN
ANANENEN

Agent’s functionality

Agent’s knowledge/Beliefs

ANRNAN

Agent’s plans

<

Agent’s goals

ANESENENANANENEN
ANASENENANANENEN

Agent’s capabilities

Agent Mobility

Agent Interaction

Interaction pathways

ANRN

Exchanged messages

ANANEN
ANANEN
ANENEN

Interaction protocols

Interaction constraints

Conflict resolution mechanisms

Contracts/commitments

Ontology

Agent Relationships

Inheritance

Aggregation v

ANANEN
ANANEN

Association v

System/Environment

Co-existing non-agent entities v

Infrastructure/environment facilities v

Organisational Structure

Agent-environment interaction v v

Environment characteristics

Deployment

Agent architecture v v

System architecture

Location of agent instances v

Sources of agent instances

5 Conclusions

In this paper, we have compared five well-known MAS methodologies using the
feature analysis framework proposed in [1]. The comparison takes into account a va-
riety of evaluation criteria and methodological features, covering from process related
and model related aspects to high-level MAS capabilities. We also assessed the capa-
bility of methodologies in terms of their support for steps in the development process,

and for AO concept modeling. This assessment will help developers to decide on the
most appropriate methodology to use in a specific application. However, it should be
noted that while this paper examines the features (and steps and concepts) of a meth-
odology as independent from each other, some methodologies may offer the features
(or steps or concepts) in combination. Thus the developer may need to assess these
constructs as a group rather than as independent entities. Future work includes ex-
tending the comparative analysis to many other existing MAS methodologies, in order
to obtain an overall assessment of the current work in AO software engineering.

References

1. Tran, Q.N., Low, G., Williams, M.A.: A Feature Analysis Framework for Evaluating Multi-
agent System Development Methodologies. In Zhong, N., Ras, Z.W., Tsumoto, S., Suzuki,
E. (eds): Foundations of Intelligent Systems — Proc. of the 14" Int. Symposium on Method-
ologies for Intelligent Systems ISMIS’03 (2003) 613-617.

2. Wood, M.: Multiagent Systems Engineering: A Methodology for Analysis and Design of
Multiagent Systems. MS Thesis, Air Force Institute of Technology, USA (2000).

3. Wooldridge, M., Jennings, N.R. and Kinny, D.: The Gaia methodology for agent-oriented
analysis and design. Journal of Autonomous Agents and Multi-Agent Systems, 3 (2000)
285-312

4. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the Gaia
methodology. ACM Transaction on Software Engineering and Methodology (in press)

5. Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modelling Technique for Systems of
BDI Agents. Proc. of the 7™ European Workshop on Modelling Autonomous Agents in a
Multi-Agent World (1996) 56-71

6. Padgham, L., Winikoff, M.: Prometheus: a methodology for developing intelligent agents.
Proc. of the 1¥ Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems (2002).

7. Iglesias, C. A., Garijo, M., Gonzalez, J.C., Velasco, J.R.: Analysis and Design of Multiagent
Systems Using MAS-CommonKADS. In Singh, M.P., Rao, A., Wooldridge, M.J. (eds.).
Intelligent Agents IV (4TAL'97). Springer-Verlag, Berlin (1998)

8. Wood, B., Pethia, R., Gold, L.R., Firth, R.: A Guide to the Assessment of Software
Development Methods. Technical Report CMUSEI-88-TR-8, SEI, Software Engineering
Institute, Carnegie Mellon University (1988)

9. Jayaratna, N.: Understanding and Evaluating Methodologies - NIMSAD A Systematic
Framework. McGraw-Hill, England (1994)

10.0lle, T.W., Sol, H.G., Tully, C.J. (eds.): Information Systems Design Methodologies - A
Feature Analysis. Elsevier Science Publishers, Amsterdam (1983)

11.The Object Agency Inc.: A Comparison of Object-Oriented Development methodologies.
http://www.toa.com/smnn?mer.html (1995)

12.Shehory, O., Sturm, A.: Evaluation of modeling techniques for agent-based systems. Proc.
of the 5™ Int. Conf. on Autonomous agents (2001) 624-631.

13.0’Malley, S.A., DeLoach, S.A.: Determining When to Use an Agent-Oriented Software En-
gineering Paradigm. Proc. of the 2™ Int. Workshop on Agent-Oriented Software Engineer-
ing (AOSE) (2001).

14.Cernuzzi, L., Rossi, G.: On the Evaluation of Agent-Oriented Modelling Methods. Proc. of
the OOPSLA Workshop on Agent-Oriented Methodologies (2002)

15.Sabas, A., Badri, M., Delisle, S.: A Multidimentional Framework for the Evaluation of
Multiagent System Methodologies. Proc. of the 6™ World Multiconference on Systemics,
Cybernetics and Informatics (SCI-2002), 211-216.

16.1glesias, C.A., Garijo, M., & Gonzalez, J.C.: A survey of agent-oriented methodologies.
Proc. of the 5™ Int. Workshop on Intelligent Agents V: Agent Theories, Architectures, and
Languages (1999)

