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Abstract— Self-Organizing Maps are a prominent tool for
exploratory data analysis. In this paper, we propose a method
of visualizing the cluster structure of the SOM based on the
similarity of areas on the map, computed by aggregation of the
distances of the underlying component planes of the codebook.
The result can then be plotted on top of the map lattice with
arrows that point to the closest cluster center, which is analogous
to flow and vector field visualizations. A parameter is provided
that allows fine-tuning of the granularity of the clustering, which
can be adjusted according to whether a global or local view on the
map is desired. We provide experimental results with a real-world
data set where we discuss the effects of parametrization and the
general applicability of our method, along with comparison to
related techniques.

I. I NTRODUCTION

The Self-Organizing Map (SOM) [3] is a valuable tool in
exploratory data analysis. It is a popular unsupervised neural
network algorithm that has been used in a wide range of scien-
tific and industrial applications [5]. In the research community,
it has received much attention in the contexts of clustering,
data mining, topology preserving vector projection from high
dimensional input spaces (or feature spaces), and visualization
of results. The SOM algorithm is computationally extremely
light [1]. This projection can be visualized in numerous ways
in order to reveal the characteristics of the underlying input
data or to analyze the quality of the obtained mapping.

In this paper, we propose a novel visualization method
that is visualized based upon vector field plotting. Another
concept exploited by our method is the neighborhood kernel,
which determines the mutual influence of nodes based on their
distance on the map lattice. This kernel function is typically
only used for training of the SOM. For each map node,
we compute a vector that points towards the closest cluster
center. We propose two methods of visualizing the results,
a vector field plot, which can be seen analogous to flow
visualization and gradient visualization, and we also derive
a dual representation that emphasizes on the cluster structure
of the map. The SOMs used for demonstration purposes and
experiments are trained on the well-known Phonetic data set,
consisting of 1962 samples in 20 variable dimensions that

describe features of phonemes recorded from human speech.
The rest of this paper is organized as follows. Section 2

describes several visualization techniques for SOMs and re-
lated work, most notably U-Matrix and clustering algorithms.
In Section 3, our novel visualization method is introduced,
along with a description of its properties and interpretations.
Section 4 presents experimental results, where the the influ-
ence of choices of neighborhood kernel, neighborhood radius
and map size are investigated. Finally, Section 5 gives a short
summary of the findings presented in this paper.

II. RELATED WORK

We briefly provide an overview of related visualization
concepts for SOMs. Most commonly, component planes and
the U-Matrix, which both take only the prototype vectors and
not the data vectors into account, are applied to visualize
the map. Component planes show projections of individ-
ual dimensions of the codebook vectors. If performed for
each component, they are the most precise and complete
representation available. However, cluster borders cannot be
easily perceived, and high feature space dimensions result
in lots of plots, a problem that many visualization methods
in multivariate statistics, like scatterplots, suffer from. The
U-Matrix technique [10] is a single plot that shows cluster
borders according to dissimilarities between neighboring units.
The distance between each map unit and its neighbors is
computed and visualized on the map lattice, usually through
color coding.

Recently, an extension to the U-Matrix has been proposed,
the U*-Matrix [12], that relies on yet another visualization
method, the P-Matrix [11]. Other than the original, it is
computed by taking both the prototype vectors and the data
vectors into account and is based on a concept of data density
around the model vectors. It is designed for use with Emergent
SOMs [10], which are SOMs trained with a high number of
map units compared to the number of data samples. Inter-
estingly, both the U*-Matrix and our novel method, among
other goals, aim at smoothing the fine-structured clusters
that make the U-Matrix visualization for these large SOMs
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Fig. 1. 30× 40 SOM: (a) U-Matrix, (b) Hit histogram
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Fig. 2. Clustering the30 × 40 SOM: (a–c) k-means (k = 4), the black
dots correspond to the map unit most similar to the cluster center; (d) Ward’s
Linkage Dendrogram for the top 30 merges, (e) Ward’s Linkage: 2 Clusters,
(f) Ward’s Linkage: 4 Clusters

less comprehensible, although the techniques are conceptually
totally different.

Methods that rely more heavily on the distribution of the
data on the map are hit histograms and Smoothed Data His-
tograms [6], and recently proposed methods that directly show
the density as graphs on top of the map [7]. Other visualization
techniques include projections of the SOM codebook with
concepts like PCA or Sammon’s Mapping. For an in-depth
discussion, see [13].

Hierarchical clustering [2], [9], [8] is related to our method
with respect to the possibility to parameterize the desired level
of detail. Our method also allows for fine-tuning to visually
emphasize either a more local or global view on the clustering
structure of the SOM.

Figure 1 shows hit histogram and U-Matrix visualizations
for a map consisting of30×40 map units that has been trained
on the Phonetic data set. This SOM will serve as the main
example throughout this paper. Before training, zero-mean-
unit-variance scaling has been performed. It can be seen from
the U-Matrix that the upper part of the map is very coherent,

while it is difficult to observe a cluster structure from the
lower two thirds. The hit histogram reveals that this SOM is
almost evenly populated, because the number of map units
(1200) is close to the number of data samples (1962). The U-
Matrix is very helpful in providing an initial overview, but it
is limited to comparing dissimilarities only between adjacent
map nodes. We aim to extend this concept such that each map
unit is compared to an area in its vicinity.

Clustering of the SOM codebook itself [14] by either
partitional or hierarchical clustering with different numbers
of clusters along with a graphical representation of the results
can be very beneficial for understanding the map. Figure 2
shows results for clustering algorithms applied to the prototype
vectors of the SOM. Three results are depicted for k-means
performed with k = 4, along with the dendrogram and
partitioning at levels 2 and 4 obtained from Ward’s Linkage.
The k-means visualizations show considerably different results
due to the non-deterministic nature of this algorithm, which
sometimes converges to sub-optimal local minima. However,
some of the regions are within the same cluster in all of the
three figures which indicates a strong contingency in these
areas, such as in the upper left corner. The dendrogram shows
that according to this linkage metric, the choice of either 2 or 4
clusters seems plausible because of the large margin to the next
level of the hierarchy. In some cases, such as Ward’s Linkage
at level 4, the clusters contain non-adjacent areas of the map
resulting from folding of the map during the training process.
The borders obtained from the discussed clustering methods
vary considerably, and in crisp clustering, the borders do not
indicate whether the clusters are very distant or not. It is one
of the aims of our method to visualize the extent of similarity
between regions, such that the coarse cluster structure can be
perceived as well as the fine differences.

Neighborhood kernel functions, which are an integral part
of any SOM training process, are incorporated in our method.
An example for an application outside the learning process is
the SOM Distortion [4], that has been shown to be the energy
function of the SOM in certain cases.

III. SOM V ISUALIZATION BY VECTORFIELDS

In this section, we describe the computation algorithm and
basic properties of our visualization technique. In the previous
section, we have hinted at some of the aims: To obtain a
visualization that allows fine-tuning between a local and global
clustering, and that is comparable to the U-Matrix family of
methods, but taking more than just the adjacent neighbors into
account, aggregating over a large region. Further, we wish
to obtain a pointer to the most similar units seen from each
individual map node. Drawing these arrows on top of the map
lattice results in a visualization analogous to gradient vector
fields where units are repelled from or attracted to each other.

We begin by defining the formal framework. A two-
dimensional SOM consists of a numberM of map unitsξi

arranged in an equidistant manner, where the indexi lies
between 1 andM . Each of the map units is linked to a
model vectormi of input dimensionN . Each of themi



is linked to the output space by its position on the map.
To distinguish between feature space and map lattice, we
explicitly write ξi for the position vector of map unit that
represents prototype vectormi; the index i connects input
and output space representation. We denote the horizontal and
vertical coordinates of the map unit asξu

i andξv
i , respectively.

Thus, the distance between two prototype vectorsmi andmj ,
or ξi andξj , can be determined both in input and output space:

dfeature(mi,mj) = ||mi −mj ||feature (1)

where||.||feature is a suitable distance metric for input space,
and

dmap(ξi, ξj) =
√

(ξu
i − ξu

j )2 + (ξv
i − ξv

j )2 (2)

is the Euclidean Distance between nodesξi andξj , i.e. roughly
the number of nodes that lie between them. Note thatdfeature

can be used to calculate distances between prototype vectors
and input samples, whiledmap can only be used to measure
the distance between map nodes.

One of the key differences between the SOM and other
prototype-based unsupervised learning methods such as k-
means is the concept of adjacency in output space. The
usually two-dimensional topology of the map is fixed, and
close regions of the map are expected to represent similar
data samples. This concept of adjacency is introduced through
the neighborhood kernel that determines the influence of
the prototype vectors among each other. Our visualization
technique heavily depends on this kernel as a weighting factor,
which is a parameterized function that takes the distance
between two map units on the lattice as input and returns a
scaling factor that determines by which amount the map unit
is updated for each iteration during training. The parameter
the kernel depends on is the neighborhood radiusσ which
controls the width of the kernel function, with high values
leading to flat stretched-out kernels and low values resulting
in sharply peaked functions. It only returns non-negative real
numbers and is monotonically decreasing. We denote the
kernel function ashσ(dmap(ξi, ξj)). The Gaussian kernel,
resembling the well-known bell-shaped curve, is probably the
most frequently used kernel for the SOM:

hGauss
σ (dmap) = exp

(
− d2

map

2σ

)
(3)

We will use the kernel function as a weighting factor that
allows us to compute the similarity in terms of input space
distance of map units that are close to each other on the map.
Our technique plots arrows for each map unit like in gradient
field visualizations. A unit’s arrow points to the region where
the most similar prototype vectors are located on the map. The
length of this arrow reflects the ratio of how much the area it
is pointing to is more similar to it than the opposite direction.

For each of theM nodesξi, the two-dimensional vectorai

is computed. As with the coordinates of the map nodes,ai

can be decomposed intou andv components, denoted asau
i

and av
i , respectively. For both axes, we compute the amount

of dissimilarity along positive and negative directions. Our

method determines these vectors in a two-step process: First,
the computations for each map unit are performed separately
for positive and negative directions of axesu andv, and finally,
these components are aggregated by a weighting scheme to
gather the coordinates ofai.

In the following, we adopt the notation that thei-th vector
ai will be computed, and formulas requiring two input vectors,
i.e. ξi and ξj always refers to the vector or number with
subscript i to be the one for which the computation is
performed. In the first step, we have to obtain the angleα
that identifies the direction ofξj seen fromξi on the map
lattice. This is defined in basic trigonometry as

α(ξi, ξj) = arctan(
ξv
j − ξv

i

ξu
j − ξu

i

) (4)

Since not only the angle, but also the distance betweenξi

andξj is of interest, this distance is projected onto theu and
v axes, after the neighborhood kernel has been applied to it
to weight the influence of distant units accordingly:

ωu(ξi, ξj) = cos(α(ξi, ξj)) · hσ(dmap(ξi, ξj)) (5)

and

ωv(ξi, ξj) = sin(α(ξi, ξj)) · hσ(dmap(ξi, ξj)) (6)

This results in a distribution of the neighborhood kernel values
among the two axes according to the position ofξi andξj on
the map and serves as a weighting factor in the following steps.
To illustrate the meaning ofω, consider that theξj is located
directly belowξi. ωu will then be zero, whileωv will absorb
the whole neighborhood kernel value, measured negatively.
The neighborhood kernel relies on the width parameterσ,
which determines the influence of far-away map units. The
importance of this parameter will be investigated in the next
section.

In the next step, the distance in input space is taken into
account. It is decomposed in positive and negative directions
for both axes for each pair of map unitsξi, ξj , resulting in
splitting the dissimilarity ofmj from mi into four quadrants:

δu
+(ξi, ξj) =

{
d(mi,mj) · wu(ξi, ξj) if ωu(ξi, ξj) > 0
0 otherwise

(7)
and

δu
−(ξi, ξj) =

{ −d(mi,mj) · wu(ξi, ξj) if ωu(ξi, ξj) < 0
0 otherwise

(8)
For the sake of compactness,d was written instead ofdfeature;
δu
+ denotes the contribution of map unitξj ’s dissimilarity in

positive direction alongu, andδu
− in negative direction. The

definition of δv
+ and δv

− follows analogously. For example,
a map unitξj that lies to the lower right ofξi results in
δu
−(ξi, ξj) = δv

+(ξi, ξj) = 0, and positive values forδu
+(ξi, ξj)

and δv
−(ξi, ξj) according to the distance in output space,

weighted by the neighborhood kernel, and also its distance
in feature space, which is directly measured by the factor
dfeature.



For all of the four quadrants, the sum of contributionsδ in
both directions is computed for each nodeξi

ρu
+(ξi) =

∑

j=1...M,j 6=i

δu
+(ξi, ξj) (9)

and
ρu
−(ξi) =

∑

j=1...M,j 6=i

δu
−(ξi, ξj) (10)

Again, ρv
+ and ρv

− are defined analogously. The variable
ρu
+(ξi) indicates how muchmi is dissimilar from its neighbors

on the side in the positiveu direction. In a gradient field
analogy, this value shows how much it is repelled from the
area on the right side. If, for example,ρu

+ is high compared
to ρu

−, the arrow will ultimately be more likely to point to the
left, since a high valueρu

+ indicates that the model vectors in
positiveu direction are strongly different frommi.

In the next step, theu and v coordinates of vectorai are
determined by aggregating negative and positive components.
This is performed by computing the ratio betweenρ+ and
ρ−. But before this can be done, a non-trivial normalization
scheme has to be performed, because units at the borders of
the map lattice would have components pointing outside of
the map equal to zero, which is not desired. The sums of
the neighborhood kernel weightsωi pointing in positive and
negative directions are

ωu
+(ξi) =

∑

j=1...M,j 6=i

{
ωu(ξi, ξj) if ωu(ξi, ξj) > 0
0 otherwise

(11)

and

ωu
−(ξi) =

∑

j=1...M,j 6=i

{ −ωu(ξi, ξj) if ωu(ξi, ξj) < 0
0 otherwise

(12)
At last, the u component of the gradient vectora is

computed as the normalized ratio

au
i =

ρu
−(ξi) · ωu

+(ξi)− ρu
+(ξi) · ωu

−(ξi)
ρu
+(ξi) + ρu−(ξi)

(13)

and analogously for thev direction. The weighting factorωu
+

is multiplied with the component in the other direction to
negate the effects of units close to the border in which case the
sum of the neighborhood kernel is greater on one side. If this
normalization would be omitted, the vectora would be biased
towards pointing to the side where units are missing, always
preferring to point outside of the map where no dissimilarity
can come from. For map units in the center of the map’su-
axis, whereωu

+ andωu
− are approximately equal, (13) can be

approximated by this simpler formula

au
i ≈ µ · ρu

−(ξi)− ρu
+(ξi)

ρu
+(ξi) + ρu−(ξi)

(14)

whereµ is a constant factor equal to
ωu

++ωu
−

2 and is approxi-
mately the same for all units in the middle of an axis.

The key calculations are performed in 9 and 10. Here, we
briefly discuss different scenarios of how ratios and propor-
tions of ρ+ andρ− influenceai.

• If ρ+ and ρ−, i.e. negative and positive dissimilarity
contributions are roughly equal, the resulting component
of ai will be close to zero, no matter how large their
absolute values are. The vector is equally repelled from
both sides, resulting in a state of equilibrium.

• If the ρ+ > ρ−, ai will point into the negative direction.
The reason for this is that the prototype vectors on the
negative side of the axis are more similar to the current
map unit than on the positive side.

• If one side dominates, but the second side still has a
high absolute value, the normalization performed in the
denominator of (13) decreases the length of the vector.

• Ultimately, the ratio ofρ+ and ρ− decides the length
of the arrow. If the dissimilarity is distributed to 50%
in each direction, it would be in an equilibrium state; in
the hypothetical example that the codebook vectors in the
positive direction are identical tomi, this would result in
the longest possible arrow in positive direction.

In the previous section, the30 × 40 SOM trained on the
Phonetic data set has been introduced. Figure 3(a) shows our
visualization technique with a Gaussian kernel withσ = 5.
If compared to the U-Matrix in Figure 1(a), it can be seen
that the longest arrows are observed near the cluster borders,
pointing to the interior of their cluster and away from these
borders. It can be seen that adjacent units, for which the arrow
points in different directions, are clearly along a cluster border.
The length of the arrows indicates the sharpness of a border.
In the middle of these transitions, arrows are sometimes
drawn with almost no distinguishable length or direction.
The corresponding prototype vectors are likely to be very far
away from either cluster, and are referred to as interpolating
units, since they do not represent any data vectors in a vector
quantization sense, but are only a link connecting two distant
data clouds. Cluster centers also have small dot-like arrows
pointing in no distinguishable direction, but the difference is
that the surrounding arrows are pointing in their direction, and
not away from them as is the case with interpolating units.

Another property of this visualization is that the units on
the edges of the map never point outside of it, which is desired
and stems from the normalization performed in 13.

The two-dimensional vector representation ofai allows for
a similar visualization with little modification. Instead of the
arrows, the orthogonal hyperplane, which in this case is again
a line, can be computed and visualized. So instead of plotting
arrows pointing towards the closest cluster center, the borders
that separate adjacent clusters can be shown. The length of
the arrow is maintained and corresponds to the length of the
border. The result is depicted in Figure 3(b). The emphasis
of this dual representation is stressing cluster borders, while
information on directions is omitted.

Computationally, the method is more expensive than the U-
Matrix. It relies on pairwise distance calculation of all the
map units, resulting inO(M2) complexity, which is the same
as hierarchical clustering, compared toO(M) for U-Matrix.
In our experience, this has not been a problem, since the
number of map units in the maps we use lies in the magnitude
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Fig. 3. 30 × 40 SOM trained on Phonetic data, depicted with Gaussian
neighborhood kernel and widthσ = 5: (a) Arrow representation that shows
directed similarities, (b) Dual representation that shows cluster borders, with
indicators for likely cluster centers

of 1000, which is computationally reasonable with modern
computers, and visualization of much larger vector fields is
limited by displaying capabilities of monitors and printers
anyway. For reducing the number of distance calculations, the
cut-off Gaussian kernel function could be considered. Since
the Gaussian kernel is exponentially decreasing with higher
distance, distance calculations could be omitted outside a
certain radius due to negligible influence on the overall result,
leading to better efficiency.

IV. EXPERIMENTS

The empirical findings from experiments with our method
are presented in this section. We show the effects of applying
it to SOMs of varying size, but the same underlying data set.
Next, we investigate how the neighborhood kernel parameter
σ influences the results. Finally, we compare our method to
related techniques that have been described in Section II.

(a)

U−Matrix (whole map)

(b)

Fig. 4. 13×17 SOM trained on Phonetic data (a) Arrow representation with
parameterσ = 2 and Gaussian kernel, (b) U-Matrix

Our first experiment concerns the number of codebook
vectors, i.e. the size of the map. The data vectors remain
the same for both maps, and we use the Phonetic data for
this experiment. The smaller version of the SOM consists of
13×17 units, and the larger one of30×40 units. In the former
case, the number of data vectors (1962) is much larger than
the number of map units (221), thus the vector quantization
properties of the SOM are emphasized. The visualizations for
the smaller version are depicted in Figure 4. The U-Matrix and
vector field plots for the larger map are shown in Figures 1(a)
and 4(a), respectively. In the smaller SOM the gap between
the upper part and the lower part of the map can clearly be
distinguished, as in the bigger SOM. Also, the lower part is
also clearly more heterogeneous. However, the larger version
of the SOM gives more insight into the structure of the data.
Transitions and gradual changes in directions and length can
be distinguished more easily at this higher granularity.

Next, we examine the effects of tuning parameterσ. In
Figures 5 and 3, the large Phonetic SOM is visualized with
three different values forσ. Figures 5(a), (b) show the two
methods forσ = 1. The visualization with this width is the
one most closely related to the U-Matrix technique, since only
direct neighbors are emphasized, while the influence of slightly
more distant units is neglected. Of all the visualizations shown
here, these two are chiseled the most and are least smooth.
The frequent changes in direction of neighboring arrows is
due to the very local nature of this kernel. In Figure 3
the visualization is shown forσ = 5, where the increased
neighborhood radius produces a smoothing effect over the
vector field. Here, changes in direction between close arrows
can be better distinguished and result in a visually more
comprehensible picture. The set of arrows is perceived as a
whole and as less chaotic. It gives the impression of visualizing
a somewhat more global structure. Finally, the visualization for
σ = 15 is depicted in Figures 5(c) and (d), where only big
clusters can be distinguished. The effect of the width parameter
σ can be summarized as follows: For a value of 1, the cluster
representation is very similar to the U-Matrix, which is the
method relying mostly on local differences. With higher values



(a) (b)

(c) (d)

Fig. 5. 30×40 SOM trained on Phonetic data (a) Vector field representation
with σ = 1, (b) Border representation withσ = 1, (e) Vector field
representation withσ = 15, (f) Border representation withσ = 15

of σ, the kinds of perceived cluster structures gradually shift
from local to global. The choice ofσ has a very deep impact
on this visualization method and is dependant on the map size.
Further experiments have shown that good choices are close
to one tenth of the number of map units in the axis of the
map lattice with fewer map units, but it also depends on the
desired level of granularity.

Finally, we compare our method to clustering methods
performed on top of the SOM. In Figure 2, three results for
k-means withk = 4 are given, along with results for Ward’s
Linkage at levels 2 and 4. The border representation in Fig-
ure 3(b) shows the most probable cluster centers obtained by
our method. The border outlines are strongest where k-means
and Ward’s Linkage also have bordering clusters. Higher
choices ofσ correspond to clustering with fewer clusters,
which can be seen by comparing Figure 2(e) with Figure 5(d)
for an example of coarse clustering. What our method can not
achieve, however, is identifying similar regions that are outside
of the range of the neighborhood radius, i.e. map units that are
close in input space, but mapped to far-away areas on the map.
For example, the labels “3” and “9” in Figure 3(b) are merged
in many of the clustering examples, for example Figure 2(c).
The reason for this is that clustering of the codebook does not
take the neighborhood on the map into account, and frequently
finds clusters that are not adjacent, while our method aims at

finding dissimilar neighboring regions. The phonemes mapped
to region “3” are mostly “A”s, the area labeled with “9” is
occupied primarily by “U”s, both vowels, with cluster “4” in
between populated by “N”s.

V. CONCLUSION

In this paper, we have proposed and demonstrated a novel
method of visualizing the cluster structure of Self-Organizing
Maps. Our method is distantly related to hierarchical clustering
methods and the U-Matrix. It is based on the neighborhood
kernel function and on aggregation of distances in the prox-
imity of each codebook vector. It requires a parameterσ
that determines the smoothness and the level of detail of the
visualization. There are two choices for depicting it, either as
gradient field where arrows point towards the closest cluster
center, or as border visualization that indicates how grave a
transition is between neighboring regions. Our experiments
have shown that this method is especially useful for maps
with high numbers of units, and that the neighborhood radius
σ has a major impact on the outcome.
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