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Abstract— Self-Organizing Maps are a prominent tool for describe features of phonemes recorded from human speech.
exploratory data analysis. In this paper, we propose a method  The rest of this paper is organized as follows. Section 2
of visualizing the cluster structure of the SOM based on the yagerines several visualization techniques for SOMs and re-
similarity of areas on the map, computed by aggregation of the lated K blv U-Matri d cl . lorith
distances of the underlying component planes of the codebook. ate W(_)r , most notably g aF”X _an c USterm_g "_igo”t ms.
The result can then be plotted on top of the map lattice with In Section 3, our novel visualization method is introduced,
arrows that point to the closest cluster center, which is analogous along with a description of its properties and interpretations.
to flow and vector field visualizations. A parameter is provided Section 4 presents experimenta| resu|t5, where the the influ-
that allows fine-tuning of the granularity of the clustering, which ence of choices of neighborhood kernel, neighborhood radius

can be adjusted according to whether a global or local view on the d . . tigated. Finallv. Section 5 ai hort
map is desired. We provide experimental results with a real-world and map size are investigaied. Finally, section 5 gives a shor

data set where we discuss the effects of parametrization and the Summary of the findings presented in this paper.
general applicability of our method, along with comparison to

related techniques. Il. RELATED WORK

We briefly provide an overview of related visualization
concepts for SOMs. Most commonly, component planes and

The Self-Organizing Map (SOM) [3] is a valuable tool inthe U-Matrix, which both take only the prototype vectors and
exploratory data analysis. It is a popular unsupervised neunalt the data vectors into account, are applied to visualize
network algorithm that has been used in a wide range of scighe map. Component planes show projections of individ-
tific and industrial applications [5]. In the research communityal dimensions of the codebook vectors. If performed for
it has received much attention in the contexts of clusteringach component, they are the most precise and complete
data mining, topology preserving vector projection from higrepresentation available. However, cluster borders cannot be
dimensional input spaces (or feature spaces), and visualizatiasily perceived, and high feature space dimensions result
of results. The SOM algorithm is computationally extremelin lots of plots, a problem that many visualization methods
light [1]. This projection can be visualized in numerous wayi® multivariate statistics, like scatterplots, suffer from. The
in order to reveal the characteristics of the underlying inplt-Matrix technique [10] is a single plot that shows cluster
data or to analyze the quality of the obtained mapping.  borders according to dissimilarities between neighboring units.

In this paper, we propose a novel visualization methothe distance between each map unit and its neighbors is
that is visualized based upon vector field plotting. Anoth@omputed and visualized on the map lattice, usually through
concept exploited by our method is the neighborhood kerneblor coding.
which determines the mutual influence of nodes based on theiRecently, an extension to the U-Matrix has been proposed,
distance on the map lattice. This kernel function is typicallthe U*-Matrix [12], that relies on yet another visualization
only used for training of the SOM. For each map nodenethod, the P-Matrix [11]. Other than the original, it is
we compute a vector that points towards the closest clustamputed by taking both the prototype vectors and the data
center. We propose two methods of visualizing the resultgctors into account and is based on a concept of data density
a vector field plot, which can be seen analogous to floaround the model vectors. It is designed for use with Emergent
visualization and gradient visualization, and we also deri&OMs [10], which are SOMs trained with a high number of
a dual representation that emphasizes on the cluster structaap units compared to the number of data samples. Inter-
of the map. The SOMs used for demonstration purposes astingly, both the U*-Matrix and our novel method, among
experiments are trained on the well-known Phonetic data sethher goals, aim at smoothing the fine-structured clusters
consisting of 1962 samples in 20 variable dimensions thidwtat make the U-Matrix visualization for these large SOMs

I. INTRODUCTION



while it is difficult to observe a cluster structure from the
lower two thirds. The hit histogram reveals that this SOM is
almost evenly populated, because the number of map units
(1200) is close to the number of data samples (1962). The U-
Matrix is very helpful in providing an initial overview, but it

is limited to comparing dissimilarities only between adjacent
map nodes. We aim to extend this concept such that each map
unit is compared to an area in its vicinity.

Clustering of the SOM codebook itself [14] by either
partitional or hierarchical clustering with different numbers
of clusters along with a graphical representation of the results
@) (b) can be very beneficial for understanding the map. Figure 2
shows results for clustering algorithms applied to the prototype
vectors of the SOM. Three results are depicted for k-means
performed withk = 4, along with the dendrogram and
partitioning at levels 2 and 4 obtained from Ward’s Linkage.
The k-means visualizations show considerably different results
due to the non-deterministic nature of this algorithm, which
sometimes converges to sub-optimal local minima. However,
some of the regions are within the same cluster in all of the
three figures which indicates a strong contingency in these
areas, such as in the upper left corner. The dendrogram shows
that according to this linkage metric, the choice of either 2 or 4
clusters seems plausible because of the large margin to the next
level of the hierarchy. In some cases, such as Ward’s Linkage
at level 4, the clusters contain non-adjacent areas of the map
resulting from folding of the map during the training process.
The borders obtained from the discussed clustering methods
vary considerably, and in crisp clustering, the borders do not
indicate whether the clusters are very distant or not. It is one

(d) ©) ® of the aims of our method to visualize the extent of similarity
Fig. 2. Clustering the30 x 40 SOM: (a—c) k-meansk{ = 4), the black between regions, such that the coarse cluster structure can be
dots correspond to the map unit most similar to the clu,ste_r center; (d) Warghgrceived as well as the fine differences.
'(‘f')”\'j\"jfrz,g ﬁi”ndkrgggé?T gfj;?:rsmp 30 merges, (e) Ward's Linkage: 2 Clusters, Neighborhood kernel functions, which are an integral part
of any SOM training process, are incorporated in our method.
An example for an application outside the learning process is
less comprehensible, although the techniques are conceptugily SOM Distortion [4], that has been shown to be the energy
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Fig. 1. 30 x 40 SOM: (a) U-Matrix, (b) Hit histogram

totally different. function of the SOM in certain cases.
Methods that rely more heavily on the distribution of the
data on the map are hit histograms and Smoothed Data His- !/l SOM VISUALIZATION BY VECTORFIELDS

tograms [6], and recently proposed methods that directly shown this section, we describe the computation algorithm and
the density as graphs on top of the map [7]. Other visualizatipasic properties of our visualization technique. In the previous
techniques include projections of the SOM codebook witkection, we have hinted at some of the aims: To obtain a
concepts like PCA or Sammon’s Mapping. For an in-dep#isualization that allows fine-tuning between a local and global
discussion, see [13]. clustering, and that is comparable to the U-Matrix family of

Hierarchical clustering [2], [9], [8] is related to our methodnethods, but taking more than just the adjacent neighbors into
with respect to the possibility to parameterize the desired levscount, aggregating over a large region. Further, we wish
of detail. Our method also allows for fine-tuning to visuallfo obtain a pointer to the most similar units seen from each
emphasize either a more local or global view on the clusteringdividual map node. Drawing these arrows on top of the map
structure of the SOM. lattice results in a visualization analogous to gradient vector

Figure 1 shows hit histogram and U-Matrix visualizationfields where units are repelled from or attracted to each other.
for a map consisting 30 x 40 map units that has been trained We begin by defining the formal framework. A two-
on the Phonetic data set. This SOM will serve as the mailimensional SOM consists of a numb&f of map units¢;
example throughout this paper. Before training, zero-meaaranged in an equidistant manner, where the intldies
unit-variance scaling has been performed. It can be seen froetween 1 andM. Each of the map units is linked to a
the U-Matrix that the upper part of the map is very coherenodel vectorm; of input dimensionN. Each of them;



is linked to the output space by its position on the mamethod determines these vectors in a two-step process: First,
To distinguish between feature space and map lattice, wee computations for each map unit are performed separately
explicitly write &; for the position vector of map unit thatfor positive and negative directions of axeandv, and finally,
represents prototype vecter,; the index: connects input these components are aggregated by a weighting scheme to
and output space representation. We denote the horizontal gather the coordinates af.

vertical coordinates of the map unit &$ and¢;, respectively. In the following, we adopt the notation that theh vector
Thus, the distance between two prototype vectoysandm;, a,; will be computed, and formulas requiring two input vectors,
or & and¢;, can be determined both in input and output spacee. ¢ and ¢; always refers to the vector or number with
subscripti to be the one for which the computation is

dfeature(mi, m;) = [[mi —mjl|feature @) performed. In the first step, we have to obtain the angle
where||.|| feature is @ suitable distance metric for input spacéhat identifies the direction of; seen from¢; on the map
and lattice. This is defined in basic trigonometry as
dma (6175) = (ff - 5u)2 + (5;} - §U)2 (2) vy
P ! \/ ’ ’ a(&, &) = arctan(gi SL) (4)
is the Euclidean Distance between nodgand¢;, i.e. roughly & —&
the number of nodes that lie between them. Note dhat.. Since not only the angle, but also the distance betwgen

can be used to calculate distances between prototype vectgig¢; is of interest, this distance is projected onto thand
and input samples, whilé,,., can only be used to measure, axes, after the neighborhood kernel has been applied to it
the distance between map nodes. to weight the influence of distant units accordingly:

One of the key differences between the SOM and other
prototype-based unsupervised learning methods such as k- w“(&i,&;) = cos(@(&i, &) - ho(dmap(&i:§5))  (5)
means is the concept of adjacency in output space. Theq
usually two-dimensional topology of the map is fixed, and
close regions of the map are expected to represent similar  w"(&,&;) = sin(a(&, &) - ho(dmap(&i, &) (6)
data samples. This concept of adjacency is introduced throup#

the neighborhood kernel that determines the influence of Is results in a distribution (.)f the nelghbo_rhood kernel values
among the two axes according to the positioro&nd&; on

the pr Ototype yectors among e_ach other. Our _V|sgal|zat|ﬂ[|1€ map and serves as a weighting factor in the following steps.
technique heavily depends on this kernel as a weighting fact%, illustrate the meaning ab, consider that thé; is located
) J

which is a parameterized function that takes the diStanaFrectly belowé;. w* will then be zero, whileo® will absorb
" )

between two map units on the lattice as input and returnsﬂ% whole neighborhood kernel value, measured negatively.

§ca|ing factor that dej[ermi_nes by .WhiCh _amou”t the map UHhe neighborhood kernel relies on the width parameter
' updated for each fteration durl_ng training. The_ par_ametvev%ich determines the influence of far-away map units. The
the kemnel depends on is the ne|ghb(.)rhood. radguwmch importance of this parameter will be investigated in the next
controls the width of the kernel function, with high Valuessection

leading to flat stretched-out kernels and low values resulting : - . .
: . . In the next step, the distance in input space is taken into
in sharply peaked functions. It only returns non-negative real

numbers and is monotonically decreasing. We denote t cécount. It is decomposed in positive and negative directions

kernel function asih, (duy(€:.&;)). The Gaussian kemel, it S8 o B0 PV o Tb WETR S0 FO 00
resembling the well-known bell-shaped curve, is probably the g y ofm; i q '

most frequently used kernel for the SOM: u d(mi,mj) - w*(&,&) i w*(&,&) >0
01 (& &) =1 ¢ otherwise
Gaus%d ) d?nap (3) (7)
h ma = I —
7 v =P 20 and
We will use the kernel function as a weighting factor that —d(mi,mj) - w(&, &) if wh(&, &) <0
allows us to compute the similarity in terms of input spacé— (&, &) = 0 otherwise
distance of map units that are close to each other on the map. (8)

Our technique plots arrows for each map unit like in gradiefor the sake of compactnesisyas written instead of reqture;

field visualizations. A unit's arrow points to the region wheré'! denotes the contribution of map urif’s dissimilarity in

the most similar prototype vectors are located on the map. Tpesitive direction along:, and5* in negative direction. The

length of this arrow reflects the ratio of how much the areadefinition of 67 and ¢” follows analogously. For example,

is pointing to is more similar to it than the opposite directiora map unit{; that lies to the lower right of; results in
For each of theM nodesg;, the two-dimensional vectar; 0" (&;, ;) = 0Y.(&:,¢;) = 0, and positive values foi!/ (§;,&;)

is computed. As with the coordinates of the map nodgs, and ¢” (¢;,€;) according to the distance in output space,

can be decomposed intoandv components, denoted a§ weighted by the neighborhood kernel, and also its distance

anday, respectively. For both axes, we compute the amouint feature space, which is directly measured by the factor

of dissimilarity along positive and negative directions. OWl fcqture.



For all of the four quadrants, the sum of contributionm
both directions is computed for each nogle

pL&) = D, %) ©)
j=1...M,j#i
and
pPhE) = > 8(6.E) (10)
J=1..M,j#i

Again, p4 and p” are defined analogously. The variable

pY (&) indicates how muchn; is dissimilar from its neighbors
on the side in the positive: direction. In a gradient field

analogy, this value shows how much it is repelled from the

area on the right side. If, for examplgy is high compared
to p*, the arrow will ultimately be more likely to point to the

left, since a high valug? indicates that the model vectors in

positive u. direction are strongly different fromm;.
In the next step, the, and v coordinates of vectou; are

If py and p_, i.e. negative and positive dissimilarity
contributions are roughly equal, the resulting component
of a; will be close to zero, no matter how large their
absolute values are. The vector is equally repelled from
both sides, resulting in a state of equilibrium.

If the p4 > p_, a; will point into the negative direction.
The reason for this is that the prototype vectors on the
negative side of the axis are more similar to the current
map unit than on the positive side.

If one side dominates, but the second side still has a
high absolute value, the normalization performed in the
denominator of (13) decreases the length of the vector.
Ultimately, the ratio ofp, and p_ decides the length
of the arrow. If the dissimilarity is distributed to 50%
in each direction, it would be in an equilibrium state; in
the hypothetical example that the codebook vectors in the
positive direction are identical to;, this would result in

determined by aggregating negative and positive components. the longest possible arrow in positive direction.

This is performed by computing the ratio betweep and

In the previous section, thg) x 40 SOM trained on the

p_. But before this can be done, a non-trivial normalizatioRhonetic data set has been introduced. Figure 3(a) shows our
scheme has to be performed, because units at the bordersigifialization technique with a Gaussian kernel with= 5.

the map lattice would have components pointing outside
the map equal to zero, which is not desired. The sums
the neighborhood kernel weights pointing in positive and
negative directions are

wi (&) = 4 Z 4 { 0 otherwise (11)
j=1...M,j#i
and
w (&) = Z { 0 7 otherwise7

G=1..M,j#i
(12)

At last, the v component of the gradient vectar is
computed as the normalized ratio
w _ PL(&) - wi (&) — pl (&) - wh (&)
a; = U U
P (&) + (&)
and analogously for the direction. The weighting factap!

(13)

dfcompared to the U-Matrix in Figure 1(a), it can be seen
ibiat the longest arrows are observed near the cluster borders,
pointing to the interior of their cluster and away from these
borders. It can be seen that adjacent units, for which the arrow
points in different directions, are clearly along a cluster border.
The length of the arrows indicates the sharpness of a border.
In the middle of these transitions, arrows are sometimes
drawn with almost no distinguishable length or direction.
The corresponding prototype vectors are likely to be very far
away from either cluster, and are referred to as interpolating
units, since they do not represent any data vectors in a vector
guantization sense, but are only a link connecting two distant
data clouds. Cluster centers also have small dot-like arrows
pointing in no distinguishable direction, but the difference is
that the surrounding arrows are pointing in their direction, and
not away from them as is the case with interpolating units.
Another property of this visualization is that the units on
the edges of the map never point outside of it, which is desired

is multiplied with the component in the other direction tQ1q stems from the normalization performed in 13.
negate the effects of units close to the border in which case therne two-dimensional vector representationapfallows for
sum of the neighborhood kernel is greater on one side. If thissimilar visualization with little modification. Instead of the

normalization would be omitted, the vectowould be biased arrows, the orthogonal hyperplane, which in this case is again

towards pointing to the side where units are missing, alwaySine, can be computed and visualized. So instead of plotting

preferring to point outside of the map where no dissimilarityrows pointing towards the closest cluster center, the borders
can come from. For map units in the center of the map's {hat separate adjacent clusters can be shown. The length of
axis, wherev andw® are approximately equal, (13) can bgne arrow is maintained and corresponds to the length of the

approximated by this simpler formula border. The result is depicted in Figure 3(b). The emphasis

p(&) — p4 (&) of this dual representation is stressing cluster borders, while

P& + P (&) information on directions is om|_tted. _

Y Computationally, the method is more expensive than the U-
wherey is a constant factor equal tﬁ% and is approxi- Matrix. It relies on pairwise distance calculation of all the
mately the same for all units in the middle of an axis. map units, resulting ir®(M?) complexity, which is the same

The key calculations are performed in 9 and 10. Here, ves hierarchical clustering, compared @) for U-Matrix.
briefly discuss different scenarios of how ratios and propdmn our experience, this has not been a problem, since the
tions of p, andp_ influencea;. number of map units in the maps we use lies in the magnitude

ai ~pu- (14
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Our first experiment concerns the number of codebook
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the same for both maps, and we use the Phonetic data for
this experiment. The smaller version of the SOM consists of
13 x 17 units, and the larger one 80 x 40 units. In the former
case, the number of data vectors (1962) is much larger than
the number of map units (221), thus the vector quantization
properties of the SOM are emphasized. The visualizations for
the smaller version are depicted in Figure 4. The U-Matrix and
vector field plots for the larger map are shown in Figures 1(a)
and 4(a), respectively. In the smaller SOM the gap between
the upper part and the lower part of the map can clearly be
distinguished, as in the bigger SOM. Also, the lower part is
also clearly more heterogeneous. However, the larger version
of the SOM gives more insight into the structure of the data.
Transitions and gradual changes in directions and length can
(b) be distinguished more easily at this higher granularity.
Fig. 3. 30 x 40 SOM trained on Phonetic data, depicted with Gaussian N€xt, we examine the effects of tuning parameterin
neighborhood kernel and width = 5: (a) Arrow representation that shows Figures 5 and 3, the large Phonetic SOM is visualized with
directed similarities, (b) Dual representation that shows cluster borders, Wkyee different values foe. Figures 5(a), (b) show the two
indicators for likely cluster centers . . : . . .
methods foro = 1. The visualization with this width is the
one most closely related to the U-Matrix technique, since only
of 1000, which is computationally reasonable with moderdirect neighbors are emphasized, while the influence of slightly
computers, and visualization of much larger vector fields ifore distant units is neglected. Of all the visualizations shown
limited by displaying capabilities of monitors and printergiere, these two are chiseled the most and are least smooth.
anyway. For reducing the number of distance calculations, tiie frequent changes in direction of neighboring arrows is
cut-off Gaussian kernel function could be considered. Sindee to the very local nature of this kernel. In Figure 3
the Gaussian kernel is exponentially decreasing with highgie visualization is shown fos = 5, where the increased
distance, distance calculations could be omitted outsidengighborhood radius produces a smoothing effect over the
certain radius due to negligible influence on the overall reswliector field. Here, changes in direction between close arrows
leading to better efficiency. can be better distinguished and result in a visually more
comprehensible picture. The set of arrows is perceived as a
whole and as less chaotic. It gives the impression of visualizing
The empirical findings from experiments with our method somewhat more global structure. Finally, the visualization for
are presented in this section. We show the effects of applyiag= 15 is depicted in Figures 5(c) and (d), where only big
it to SOMs of varying size, but the same underlying data sefusters can be distinguished. The effect of the width parameter
Next, we investigate how the neighborhood kernel parameteican be summarized as follows: For a value of 1, the cluster
o influences the results. Finally, we compare our method tepresentation is very similar to the U-Matrix, which is the
related techniques that have been described in Section Il. method relying mostly on local differences. With higher values

IV. EXPERIMENTS



finding dissimilar neighboring regions. The phonemes mapped
to region “3” are mostly “A’s, the area labeled with “9” is
occupied primarily by “U”s, both vowels, with cluster “4” in
between populated by “N”s.

V. CONCLUSION

In this paper, we have proposed and demonstrated a novel
method of visualizing the cluster structure of Self-Organizing
Maps. Our method is distantly related to hierarchical clustering
methods and the U-Matrix. It is based on the neighborhood
kernel function and on aggregation of distances in the prox-
imity of each codebook vector. It requires a parameter
that determines the smoothness and the level of detalil of the
visualization. There are two choices for depicting it, either as
gradient field where arrows point towards the closest cluster
center, or as border visualization that indicates how grave a
transition is between neighboring regions. Our experiments
have shown that this method is especially useful for maps
with high numbers of units, and that the neighborhood radius
o has a major impact on the outcome.
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Fig. 5. 30 x40 SOM trained on Phonetic data (a) Vector field representatio
with ¢ = 1, (b) Border representation witr = 1, (e) Vector field
representation witler = 15, (f) Border representation with = 15
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