Skip to main content

A Neural Network Model for Hierarchical Multilingual Text Categorization

  • Conference paper
Advances in Neural Networks – ISNN 2005 (ISNN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3497))

Included in the following conference series:

  • 1668 Accesses

Abstract

Enabling navigation via a hierarchy of conceptually related multilingual documents constitutes the fundamental support to global knowledge discovery. This requirement of organizing multilingual document by concepts makes the goal of supporting global knowledge discovery a concept-based multilingual text categorization task. In this paper, intelligent methods for enabling concept-based hierarchical multilingual text categorization using neural networks are proposed. First, a universal concept space, encapsulating the semantic knowledge of the relationship between all multilingual terms and concepts, which is required by concept-based multilingual text categorization, is generated using a self-organizing map. Second, a set of concept-based multilingual document categories, which acts as the hierarchical backbone of a browseable multilingual document directory, are generated using a hierarchical clustering algorithm. Third, a concept-based multilingual text classifier is developed using a 3-layer feed-forward neural network to facilitate the concept-based multilingual text categorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderberg, M.R.: Cluster Analysis for Applications. Academic Press, Inc., New York (1973)

    MATH  Google Scholar 

  2. Carbonell, J.G., Yang, Y., Frederking, R.E., Brown, R.D., Geng, Y., Lee, D.: Translingual Information Retrieval: a Comparative Evaluation. In: Pollack, M.E. (ed.) IJCAI 1997 Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp. 708–714 (1997)

    Google Scholar 

  3. Chen, H., Schuffels, C., Orwig, R.: Internet Categorization and Search: A Self-Organizing Approach. Visual Communications for Image Representation 7, 88–102 (1996)

    Article  Google Scholar 

  4. Crouch, C.: An Approach to the Automatic Construction of Global Thesaurus. Information Processing and Management 26, 629–640 (1990)

    Article  Google Scholar 

  5. Davis, M.: New Experiments in Cross-Language Text Retrieval at Nmsu’S Computing Research Lab. In: Proceedings of the Fifth Retrieval Conference (TREC-5) Gaithersburg, National Institute of Standards and Technology, MD (1996)

    Google Scholar 

  6. Haykins, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Upper Saddle River (1999)

    Google Scholar 

  7. Honkela, T., Kaski, S., Lagus, K. , Kohonen, T.: Newsgroup Exploration with WEBSOM Method and Browsing Interface. Technical Report A32. Helsinki University of Technology, Laboratory of Computer and Information Science, Espoo, Finland (1996)

    Google Scholar 

  8. Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: WEBSOM – Self-Organizing Maps of document collections. Neurocomputing 21, 101–117 (1998)

    Article  MATH  Google Scholar 

  9. Jing, Y., Croft, W.B.: An Association Thesaurus for Information Retrieval. Technical Report 94-17, Department of Computer Science, University of Massachusetts, Amherst (1994)

    Google Scholar 

  10. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)

    Google Scholar 

  11. Landauer, T.K., Littman, M.L.: Fully Automatic Cross-Language Document Retrieval. In: Proceedings of the Sixth Conference on Electronic Text Research, pp. 31–38 (1990)

    Google Scholar 

  12. Lin, X., Soergel, D., Marchionini, G.: A Self-Organizing Semantic Map for Information Retrieval. In: Proceedings of the ACM SIGIR International Conference on Research and Development in Information Retrieval, Chicago, pp. 262–269 (1991)

    Google Scholar 

  13. Qiu, Y.: Automatic Query Expansion Based on a Similarity Thesaurus. PhD thesis, Swiss Federal Institute of Technology (1995)

    Google Scholar 

  14. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  15. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error Propagation. In: Parallel distributed processing: explorations in the microstructure of cognition, ch. 8, MIT Press, Cambridge (1986)

    Google Scholar 

  16. Salton, G.: Automatic: Text Processing: The Transformation, analysis, and Retrieval of Information by Computer. Addison-Wesley, Reading (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chau, R., Yeh, C., Smith, K.A. (2005). A Neural Network Model for Hierarchical Multilingual Text Categorization. In: Wang, J., Liao, XF., Yi, Z. (eds) Advances in Neural Networks – ISNN 2005. ISNN 2005. Lecture Notes in Computer Science, vol 3497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427445_38

Download citation

  • DOI: https://doi.org/10.1007/11427445_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25913-8

  • Online ISBN: 978-3-540-32067-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics