Skip to main content

On Kernel Discriminant Analyses Applied to Phoneme Classification

  • Conference paper
Advances in Neural Networks – ISNN 2005 (ISNN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3497))

Included in the following conference series:

Abstract

In this paper we recall two kernel methods for discriminant analysis. The first one is the kernel counterpart of the ubiquitous Linear Discriminant Analysis (Kernel-LDA), while the second one is a method we named Kernel Springy Discriminant Analysis (Kernel-SDA). It seeks to separate classes just as Kernel-LDA does, but by means of defining attractive and repulsive forces. First we give technical details about these methods and then we employ them on phoneme classification tasks. We demonstrate that the application of kernel functions significantly improves the recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baudat, G., Anouar, F.: Generalized Discriminant Analysis Using a Kernel Approach. Neural Comput. 12, 2385–2404 (2000)

    Article  Google Scholar 

  2. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Daelemans, W., Zavrel, J., Sloot, K., Bosch, A.: TiMBL: Tilburg Memory Based Learner version 2.0 Reference Guide, ILK Technical Report - ILK 99-01, Computational Linguistics, Tilburg University, The Netherlands (1999)

    Google Scholar 

  4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, NY (2001)

    MATH  Google Scholar 

  5. Kernel Machines Web site, http://www.kernel-machines.org

  6. Kocsor, A., et al.: A Comparative Study of Several Feature Transformation and Learning Methods for Phoneme Classification. Int. Journal of Speech Technology 3, 263–276 (2000)

    Article  MATH  Google Scholar 

  7. Kocsor, A., Tóth, L., Paczolay, D.: A Nonlinearized Discriminant Analysis and Its Application to Speech Impediment Therapy. In: Matoušek, V., Mautner, P., Mouček, R., Tauser, K. (eds.) TSD 2001. LNCS (LNAI), vol. 2166, pp. 249–257. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Kocsor, A., Kovács, K.: Kernel Springy Discriminant Analysis and Its Application to a Phonological Awareness Teaching System. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2002. LNCS (LNAI), vol. 2448, pp. 325–328. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Müller, K.-R.: Fisher Discriminant Analysis with Kernels. In: Hu, Y.-H., et al. (eds.) Neural Networks for Signal Processing IX, pp. 41–48. IEEE, Los Alamitos (1999)

    Chapter  Google Scholar 

  10. Murthy, S.K., Kasif, S., Salzberg, S.: A System for Induction of Oblique Decision Trees. Journal of Artificial Intelligence Research 2, 1–32 (1994)

    MATH  Google Scholar 

  11. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  12. Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition. Prent. Hall, Englewood Cliffs (1993)

    Google Scholar 

  13. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons Inc., Chichester (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kocsor, A. (2005). On Kernel Discriminant Analyses Applied to Phoneme Classification. In: Wang, J., Liao, XF., Yi, Z. (eds) Advances in Neural Networks – ISNN 2005. ISNN 2005. Lecture Notes in Computer Science, vol 3497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427445_58

Download citation

  • DOI: https://doi.org/10.1007/11427445_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25913-8

  • Online ISBN: 978-3-540-32067-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics