Abstract
This article gives an overview of the Rough Set Exploration System (RSES). RSES is a freely available software system toolset for data exploration, classification support and knowledge discovery. The main functionalities of this software system are presented along with a brief explanation of the algorithmic methods used by RSES. Many of the RSES methods have originated from rough set theory introduced by Zdzisław Pawlak during the early 1980s.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.): RSCTC 2002. LNCS (LNAI), vol. 2475. Springer, Heidelberg (2002)
Bazan, J.: A Comparison of Dynamic and non-Dynamic Rough Set Methods for Extracting Laws from Decision Tables. In: Skowron, A., Polkowski, L. (eds.) Rough Sets in Knowledge Discovery 1, pp. 321–365. Physica-Verlag, Heidelberg (1998)
Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set algorithms in classification problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 49–88. Physica-Verlag, Heidelberg (2000)
Bazan, J., Nguyen, H.S., Nguyen, T.T., Skowron, A., Stepaniuk, J.: Decision rules synthesis for object classification. In: Orłowska, E. (ed.) Incomplete Information: Rough Set Analysis, pp. 23–57. Physica - Verlag, Heidelberg (1998)
Bazan, J.G., Skowron, A., Ślęzak, D., Wróblewski, J.: Searching for the complex decision reducts: The case study of the survival analysis. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 160–168. Springer, Heidelberg (2003)
Domingos, P.: Unifying Instance-Based and Rule-Based Induction. Machine Learning 24(2), 141–168 (1996)
Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)
Góra, G., Wojna, A.G.: RIONA: a New Classification System Combining Rule Induction and Instance-Based Learning. Fundamenta Informaticae 51(4), 369–390 (2002)
Grzymała-Busse, J.: A New Version of the Rule Induction System LERS. Fundamenta Informaticae 31(1), 27–39 (1997)
Grzymała-Busse, J., Hu, M.: A comparison of several approaches to missing attribute values in data mining. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 378–385. Springer, Heidelberg (2001)
Hippe, M.: Towards the classification of musical works: A rough set approach. In: [1], pp. 546–553
Komorowski, J., Øhrn, A., Skowron, A.: ROSETTA Rough Sets. In: Kloesgen, W., Zytkow, J. (eds.) Handbook of KDD, pp. 554–559. Oxford University Press, Oxford (2002)
Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough Sets: A tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization, pp. 3–98. Springer, Singapore (1999)
Kostek, B., Szczuko, P., Zwan, P.: Processing of musical data employing rough sets and artificial neural networks. In: Tsumoto, S., Slowinski, R., Komorowski, J., Grzymala-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 539–548. Springer, Heidelberg (2004)
Lazareck, L., Ramanna, S.: Classification of swallowing sound signals: A rough set approach. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 679–684. Springer, Heidelberg (2004)
Hoa, N.S.: Data regularity analysis and applications in data mining. Ph. D. Thesis, Department of Math., Comp. Sci. and Mechanics. Warsaw University, Warsaw (1999)
Nguyen, S.H., Nguyen, H.S.: Discretization Methods in Data Mining. In: Skowron, A., Polkowski, L. (eds.) Rough Sets in Knowledge Discovery 1, pp. 451–482. Physica Verlag, Heidelberg (1998)
Nguyen, S.H., Skowron, A., Synak, P.: Discovery of data patterns with applications to decomposition and classfification problems. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 2, pp. 55–97. Physica-Verlag, Heidelberg (1998)
Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning. In: Neural and Statistical Classification, Ellis Horwood, London (1994)
Pawlak, Z.: Rough sets. International J. Comp. Inform. Science 11, 341–356 (1982)
Pawlak, Z.: Rough sets and decision tables. LNCS, vol. 208, pp. 186–196. Springer, Berlin (1985)
Pawlak, Z.: On rough dependency of attributes in information systems. Bulletin of the Polish Academy of Sciences 33, 551–599 (1985)
Pawlak, Z.: On decision tables. Bulletin of the Polish Academy of Sciences 34, 553–572 (1986)
Pawlak, Z.: Decision tables – a rough set approach. Bulletin of EATCS 33, 85–96 (1987)
Pawlak, Z., Skowron, A.: Rough membership functions. In: Yager, R., et al. (eds.) Advances in Dempster Shafer Theory of Evidence, pp. 251–271. Wiley, N.Y (1994)
Pawlak, Z.: In pursuit of patterns in data reasoning from data – the rough set way. In: [1], pp. 1–9 (2002)
Pawlak, Z.: Rough sets and decision algorithms. In: [39], pp. 30–45 (2001)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1991)
Peters, J.F., Ramanna, S.: Towards a software change classification system. Software Quality Journal 11(2), 121–148 (2003)
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances in Rough Set Theory, pp. 259–300. Kluwer Academic Publishers, Dordrecht (1992)
Skowron, A., Polkowski, L.: Synthesis of decision systems from data tables. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining: Analysis for Imprecise Data, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1997)
Skowron, A.: Rough Sets in KDD (plenary talk). 16-th World Computer Congress (IFIP’2000). In: Shi, Z., Faltings, B., Musen, M. (eds.) Proceedings of Conference on Intelligent Information Processing (IIP2000), pp. 1–17. Publishing House of Electronic Industry, Beijing (2000)
Ślęzak, D., Wróblewski, J.: Classification algorithms based on linear combinations of features. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 548–553. Springer, Heidelberg (1999)
Valdés, J.J., Barton, A.J.: Gene discovery in leukemia revisited: A computational intelligence perspective. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 118–127. Springer, Heidelberg (2004)
Wojna, A.G.: Center-Based Indexing in Vector and Metric Spaces. Fundamenta Informaticae 56(3), 285–310 (2003)
Wojnarski, M.: LTF-C: Architecture, Training Algorithm and Applications of New Neural Classifier. Fundamenta Informaticae 54(1), 89–105 (2003)
Wróblewski, J.: Genetic algorithms in decomposition and classification problem. In: Skowron, A., Polkowski, L. (eds.) Rough Sets in Knowledge Discovery 1, pp. 471–487. Physica Verlag, Heidelberg (1998)
Wróblewski, J.: Covering with Reducts - A Fast Algorithm for Rule Generation. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 402–407. Springer, Heidelberg (1998)
Ziarko, W.P., Yao, Y. (eds.): RSCTC 2000. LNCS (LNAI), vol. 2005. Springer, Heidelberg (2001)
The RSES Homepage, http://logic.mimuw.edu.pl/~rses
Report from EUNITE World competition in domain of Intelligent Technologies, http://www.eunite.org/eunite/events/eunite2002/competitionreport2002.htm
The ROSETTA Homepage, http://rosetta.lcb.uu.se/general/
The WEKA Homepage, http://www.cs.waikato.ac.nz/~ml
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bazan, J.G., Szczuka, M. (2005). The Rough Set Exploration System. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets III. Lecture Notes in Computer Science, vol 3400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427834_2
Download citation
DOI: https://doi.org/10.1007/11427834_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25998-5
Online ISBN: 978-3-540-31850-7
eBook Packages: Computer ScienceComputer Science (R0)