Skip to main content

Computational Intelligence in Bioinformatics

  • Conference paper
Transactions on Rough Sets III

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 3400))

Abstract

Computational intelligence poses several possibilities in Bioinformatics, particularly by generating low-cost, low-precision, good solutions. Rough sets promise to open up an important dimension in this direction. The present article surveys the role of artificial neural networks, fuzzy sets and genetic algorithms, with particular emphasis on rough sets, in Bioinformatics. Since the work entails processing huge amounts of incomplete or ambiguous biological data, the knowledge reduction capability of rough sets, learning ability of neural networks, uncertainty handling capacity of fuzzy sets and searching potential of genetic algorithms are synergistically utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach. Adaptive Computation and Machine Learning, The MIT Press, Cambridge (2001)

    Google Scholar 

  2. Special Issue on Bioinformatics. IEEE Computer 35 (2002)

    Google Scholar 

  3. Special Issue on Bioinformatics, Part I: Advances and Challenges. Proceedings of the IEEE 90 (2002)

    Google Scholar 

  4. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of Molecular Biology 215, 403–410 (1990)

    Google Scholar 

  5. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402 (1997)

    Article  Google Scholar 

  6. Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Communications of the ACM 37, 77–84 (1994)

    Article  Google Scholar 

  7. Mitra, S., Acharya, T.: Data Mining: Multimedia, Soft Computing, and Bioinformatics. John Wiley, New York (2003)

    Google Scholar 

  8. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Co. Inc, New York (1994)

    MATH  Google Scholar 

  9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  10. Qian, N., Sejnowski, T.: Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology 202, 865–884 (1988)

    Article  Google Scholar 

  11. Rost, B., Sander, C.: Prediction of protein secondary structure at better than 70% accuracy. Journal of Molecular Biology 232, 584–599 (1993)

    Article  Google Scholar 

  12. Riis, S.K., Krogh, A.: Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. Journal of Computational Biology 3, 163–183 (1996)

    Article  Google Scholar 

  13. Herrero, J., Valencia, A., Dopazo, J.: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17, 126–136 (2001)

    Article  Google Scholar 

  14. Cho, S.B., Ryu, J.: Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features. Proceedings of the IEEE 90, 1744–1753 (2002)

    Article  Google Scholar 

  15. Fogel, G., Corne, D. (eds.): Evolutionary Computation in Bioinformatics. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  16. Schulze-Kremer, S.: Genetic algorithms for protein tertiary structure prediction. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving from Nature II, pp. 391–400. North Holland, Amsterdam (1992)

    Google Scholar 

  17. Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R.: Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology 267, 727–748 (1997)

    Article  Google Scholar 

  18. Deb, K., Raji Reddy, A.: Reliable classification of two-class cancer data using evolutionary algorithms. BioSystems 72, 111–129 (2003)

    Article  Google Scholar 

  19. Mitra, S.: An evolutionary rough partitive clustering. Pattern Recognition Letters 25, 1439–1449 (2004)

    Article  Google Scholar 

  20. Torkkola, K., Gardner, R.M., Kaysser-Kranich, T., Ma, C.: Self-organizing maps in mining gene expression data. Information Sciences 139, 79–96 (2001)

    Article  MATH  Google Scholar 

  21. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Smitrovsky, E., Lander, E.S., Golub, T.R.: Interpreting patterns of gene expression with self-organizing maps: Methods and applications to hematopoietic differentiation. In: Proceedings of National Academy of Sciences, USA 96, 2907–2912 (1999)

    Google Scholar 

  22. Futschik, M.E., Reeve, A., Kasabov, N.: Evolving connectionist systems for knowledge discovery from gene expression data of cancer tissue. Artificial Intelligence in Medicine 28, 165–189 (2003)

    Article  Google Scholar 

  23. Uberbacher, E.C., Xu, Y., Mural, R.J.: Discovering and understanding genes in human DNA sequence using GRAIL. Methods Enzymol 266, 259–281 (1996)

    Article  Google Scholar 

  24. Larsen, N.I., Engelbrecht, J., Brunak, S.: Analysis of eukaryotic promoter sequences reveals a systematically occurring CT-signal. Nucleic Acids Res 23, 1223–1230 (1995)

    Article  Google Scholar 

  25. Pedersen, A.G., Nielsen, H.: Neural network prediction of translation initiation sites in eukaryotes: Perspectives for EST and genome analysis. Ismb 5, 226–233 (1997)

    Google Scholar 

  26. Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artificial Intelligence 70, 119–165 (1994)

    Article  MATH  Google Scholar 

  27. Opitz, D.W., Shavlik, J.W.: Connectionist theory refinement: Genetically searching the space of network topologies. Journal of Artificial Intelligence Research 6, 177–209 (1997)

    MATH  Google Scholar 

  28. Ma, Q., Wang, J.T.L., Shasha, D., Wu, C.H.: DNA sequence classification via an expectation maximization algorithm and neural networks: A case study. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 31, 468–475 (2001)

    Article  Google Scholar 

  29. Browne, A., Hudson, B.D., Whitley, D.C., Ford, M.G., Picton, P.: Biological data mining with neural networks: Implementation and application of a flexible decision tree extraction algorithm to genomic problem domains. Neurocomputing 57, 275–293 (2004)

    Article  Google Scholar 

  30. Setiono, R.: Extracting rules from neural networks by pruning and hidden-unit splitting. Neural Computation 9, 205–225 (1997)

    Article  MATH  Google Scholar 

  31. Hanke, J., Reich, J.G.: Kohonen map as a visualization tool for the analysis of protein sequences: Multiple alignments, domains and segments of secondary structures. Comput Applic Biosci 6, 447–454 (1996)

    Google Scholar 

  32. Cai, Y.D., Yu, H., Chou, K.C.: Artificial neural network method for predicting HIV protease cleavage sites in protein. J. Protein Chem. 17, 607–615 (1998)

    Article  Google Scholar 

  33. Cai, Y.D., Yu, H., Chou, K.C.: Prediction of beta-turns. J. Protein Chem. 17, 363–376 (1998)

    Article  Google Scholar 

  34. Ferran, E.A., Pflugfelder, B., Ferrara, P.: Self-organized neural maps of human protein sequences. Protein Sci. 3, 507–521 (1994)

    Article  Google Scholar 

  35. Wang, H.C., Dopazo, J., de la Fraga, L.G., Zhu, Y.P., Carazo, J.M.: Self-organizing tree-growing network for the classification of protein sequences. Protein Sci. 7, 2613–2622 (1998)

    Article  Google Scholar 

  36. Wang, H.C., Dopazo, J., Carazo, J.M.: Self-organizing tree-growing network for classifying amino acids. Bioinformatics 14, 376–377 (1998)

    Article  Google Scholar 

  37. Chou, P., Fasmann, G.: Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology 47, 45–148 (1978)

    Google Scholar 

  38. Bohr, H., Bohr, J., Brunak, S., Cotterill, R.M.J., Fredholm, H.: A novel approach to prediction of the 3-dimensional structures of protein backbones by neural networks. FEBS Letters 261, 43–46 (1990)

    Article  Google Scholar 

  39. Lund, O., Frimand, K., Gorodkin, J., Bohr, H., Bohr, J., Hansen, J., Brunak, S.: Protein distance constraints predicted by neural networks and probability distance functions. Protein Eng. 10, 1241–1248 (1997)

    Article  Google Scholar 

  40. Notredame, C., Higgins, D.G.: SAGA: Sequence alignment by genetic algorithm. Ucleic Acids Research 24, 1515–1524 (1996)

    Article  Google Scholar 

  41. Notredame, C., Holm, L., Higgins, D.G.: COFFEE: An objective function for multiple sequence alignments. Bioinformatics 14, 407–422 (1998)

    Article  Google Scholar 

  42. Deb, K., Agarwal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Proceedings of the Parallel Problem Solving from Nature VI Conferences, pp. 849–858 (2000)

    Google Scholar 

  43. Pawlak, Z.: Rough Sets, Theoretical Aspects of Reasoning about Data. Kluwer Academic, Dordrecht (1991)

    MATH  Google Scholar 

  44. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowiński, R. (ed.) Intelligent Decision Support, Handbook of Applications and Advances of the Rough Sets Theory, pp. 331–362. Kluwer Academic, Dordrecht (1992)

    Google Scholar 

  45. Midelfart, H., Lægreid, A., Komorowski, J.: Classification of gene expression data in an ontology. In: Crespo, J.L., Maojo, V., Martin, F. (eds.) ISMDA 2001. LNCS, vol. 2199, pp. 186–194. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  46. Midelfart, H., Komorowski, J., Nørsett, K., Yadetie, F., Sandvik, A.K., Lægreid, A.: Learning rough set classifiers from gene expressions and clinical data. Fundamenta Informaticae 53, 155–183 (2002)

    MathSciNet  Google Scholar 

  47. Lingras, P., West, C.: Interval set clustering of Web users with rough k-means. Technical Report No. 2002-002, Dept. of Mathematics and Computer Science, St. Mary’s University, Halifax, Canada (2002)

    Google Scholar 

  48. Wroblewski, J.: Finding minimal reducts using genetic algorithms. Technical Report 16/95, Warsaw Institute of Technology - Institute of Computer Science, Poland (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mitra, S. (2005). Computational Intelligence in Bioinformatics. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets III. Lecture Notes in Computer Science, vol 3400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427834_6

Download citation

  • DOI: https://doi.org/10.1007/11427834_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25998-5

  • Online ISBN: 978-3-540-31850-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics