Abstract
This article introduces an ethological approach to evaluating biologically-inspired collective behavior in intelligent systems. This is made possible by considering ethology (ways to explain agent behavior) in the context of approximation spaces. The aims and methods of ethology in the study of the behavior of biological organisms were introduced by Niko Tinbergen in 1963. The rough set approach introduced by Zdzisław Pawlak provides a ground for concluding to what degree a particular behavior for an intelligent system is a part of a set of behaviors representing a norm or standard. A rough set approach to ethology in studying the behavior of cooperating agents is introduced. Approximation spaces are used to derive action-based reference rewards for a swarm. Three different approaches to projecting rewards are considered as a part of a study of learning in real-time by a swarm. The contribution of this article is the introduction of an approach to rewarding swarm behavior in the context of an approximation space.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.): RSCTC 2002. LNCS (LNAI), vol. 2475. Springer, Heidelberg (2002)
Applewhite, A.: The view from the top. IEEE Spectrum, 36–51 (November 2004)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. From Natural to Artificial Systems. Oxford University Press, UK (1999)
Cheng, K.: Generalization and Tinbergen’s four whys. Behavioral and Brain Sciences 24, 660–661 (2001)
Dorigo, M.: Swarmbots. Wired, 119 (February 2004)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience, Toronto (2001)
Fahle, M., Poggio, T. (eds.): Perceptual Learning. The MIT Press, Cambridge (2002)
Geppert, L.: Sony’s Orio. IEEE Spectrum (February 2004)
Harnad, S. (ed.): Categorical Perception. The Groundwork of cognition. Cambridge University Press, UK (1987)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction, Springer, Berlin (2001)
Holt, J.: UML for Systems Engineering. Watching the Wheels, The Institute of Electrical Engineers, Herts, UK (2001)
Kruuk, H.: Niko’s Nature. In: A life of Niko Tinbergen and his science of animal behavior, Oxford University Press, London (2003)
Lehner, P.N.: Handbook of Ethological Methods, 2nd edn. Cambridge University Press, UK (1996)
Martin, P., Bateson, P.: Measuring Behavior. Cambridge University Press, Cambridge (1993)
Mondada, F., Bonani, M., Magnenat, S., Guignard, A., Floreano, D.: Physical connections and cooperation in swarm robotics. In: Groen, F., Amato, N., Bonarini, A., Yoshida, E., Kröse, B. (eds.) Proceedings of the 8th Conference on Intelligent Autonomous Systems (IAS8), Amsterdam, NL, March 10-14, pp. 53–60 (2004)
Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)
Son, N.H., Skowron, A., Szczuka, M.S.: Analysis of image sequences for the Unmanned Aerial Vehicle. In: Hirano, S., Inuiguchi, M., Tsumoto, S. (eds.) Bulletin of the International Rough Set Society, vol. 5(1/2), pp. 185–184 (2001)
OMG Unified Modeling Language (UML) Specification. Object Management Group, http://www.omg.org
Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing. Techniques for Computing with Words. Springer, Heidelberg (2004)
Pawlak, Z.: Rough sets. International J. Comp. Inform. Science 11, 341–356 (1982)
Pawlak, Z.: Rough sets and decision tables. LNCS, vol. 208, pp. 186–196. Springer, Berlin (1985)
Pawlak, Z.: On rough dependency of attributes in information systems. Bulletin Polish Acad. Sci. Tech. 33, 551–599 (1985)
Pawlak, Z.: On decision tables. Bulletin Polish Acad. Sci. Tech. 34, 553–572 (1986)
Pawlak, Z.: Decision tables—a rough set approach. Bulletin ETACS 33, 85–96 (1987)
Pawlak, Z.: Elementary rough set granules: Toward a rough set processor. In: [19], pp. 5–14 (2004)
Pawlak, Z.: Rough Sets. Theoretical Reasoning about Data. Kluwer, Dordrecht (1991)
Pawlak, Z., Skowron, A.: Rough membership functions. In: Yager, R., et al. (eds.) Advances in Dempster Shafer Theory of Evidence, pp. 251–271. Wiley, N.Y (1994)
Pawlak, Z.: Some issues on rough sets. Transactions on Rough Sets I, 1–58 (2004)
Pawlak, Z.: In pursuit of patterns in data reasoning from data–The rough set way. In: [1], pp. 1–9 (2002)
Pawlak, Z.: Rough sets and decision algorithms. In: [72], pp. 30–45 (2001)
Pawlak, Z.: Flow graphs and decision algorithms. In: [69], pp. 1–10 (2003)
Peters, J.F.: Design patterns in intelligent systems. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 262–269. Springer, Heidelberg (2003)
Peters, J.F., Ramanna, S.: Intelligent systems design and architectural patterns. In: Proceedings IEEE Pacific Rim Conference on Communication, Computers and Signal Processing (PACRIM 2003), pp. 808–811 (2003)
Peters, J.F.: Approximation space for intelligent system design patterns. Engineering Applications of Artificial Intelligence 17(4), 1–8 (2004)
Peters, J.F., Ramanna, S.: Measuring acceptance of intelligent system models. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 764–771. Springer, Heidelberg (2004)
Peters, J.F.: Approximation spaces for hierarchical intelligent behavioral system models. In: Keplicz, B.D., Jankowski, A., Skowron, A., Szczuka, M. (eds.) Monitoring, Security and Rescue Techniques in Multiagent Systems. Advances in Soft Computing, pp. 13–30. Physica-Verlag, Heidelberg (2004)
Peters, J.F., Ramanna, S.: Approximation space for software models. Transactions on Rough Sets I, 338–355 (2004)
Peters, J.F., Skowron, A., Stepaniuk, J., Ramanna, S.: Towards an ontology of approximate reason. Fundamenta Informaticae 51(1,2), 157–173 (2002)
Peters, J.F., Ahn, T.C., Borkowski, M., Degtyaryov, V., Ramanna, S.: Linecrawling robot navigation: A rough neurocomputing approach. In: Zhou, C., Maravall, D., Ruan, D. (eds.) Autonomous Robotic Systems. Studies in Fuzziness and Soft Computing, vol. 116, pp. 141–164. Physica-Verlag, Heidelberg (2003)
Peters, J.F., Ahn, T.C., Borkowski, M.: Object-classification by a line-crawling robot: A rough neurocomputing approach. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 595–601. Springer, Heidelberg (2002)
Peters, J.F., Skowron, A., Synak, P., Ramanna, S.: Rough sets and information granulation. In: Bilgic, T., Baets, D., Kaynak, O. (eds.) IFSA 2003. LNCS, vol. 2715, pp. 370–377. Springer, Heidelberg (2003)
Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 1. Studies in Fuzziness and Soft Computing, vol. 18. Physica-Verlag, Heidelberg (1998)
Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 2. Studies in Fuzziness and Soft Computing, vol. 19. Physica-Verlag, Heidelberg (1998)
Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. Int. J. Approximate Reasoning 15/4, 333–365 (1996)
Polkowski, L., Skowron, A.: Rough meriological calculi of granules: A rough set approach to computation. Computational Intelligence 17(3), 472–492 (2001)
Polkowski, L.: Rough Sets. Mathematical Foundations. Physica–Verlag, Heidelberg (2002)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, Amsterdam (1988)
Skowron, A.: Toward intelligent systems: Calculi of information granules. In: Hirano, S., Inuiguchi, M., Tsumoto, S. (eds.) Bulletin of the International Rough Set Society, vol. 5(1/2), pp. 9–30 (2001)
Skowron, A., Peters, J.F.: Rough sets: Trends and Challenges. In: [69], pp. 25–34 (2003)
Skowron, A., Stepaniuk, J.: Information systems in hierarchical modeling. In: Lindemann, G., Burkhard, H.-D., Czaja, L. (eds.) Proceedings of the Workshop on Concurrency, Specification and Programming (CSP 2004), Caputh, Germany, September 24-26, Informatik- Bericht Nr. 170, vol. 1-3, pp. 378–389. Humboldt Universität (2004)
Skowron, A., Synak, P., Peters, J.F.: Spacio-temporal approximate reasoning over hierarchical information maps. In: Lindemann, G., Burkhard, H.-D., Czaja, L., Skowron, A., Schlingloff, H., Suraj, Z. (eds.) Proceedings of the Workshop on Concurrency, Specification and Programming (CSP 2004), Caputh, Germany, September 24–26, Informatik-Bericht Nr. 170, pp. 358–371. Humboldt Universität (2004)
Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Proceedings of the Third International Workshop on Rough Sets and Soft Computing, San Jose, pp. 156–163 (1994)
Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Lin, T.Y., Wildberger, A.M. (eds.) Soft Computing, Simulation Councils, San Diego, pp. 18–21 (1995)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)
Skowron, A., Stepaniuk, J.: Information granules and approximation spaces. In: Proc. of the 7th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU 1998), Paris, pp. 1354–1361 (1998)
Skowron, A., Stepaniuk, J.: Information granules and rough neural computing. In: [19], pp. 43–84 (2004)
Skowron, A., Stepaniuk, J.: Information granules: Towards Foundations of Granular Computing. Int. Journal of Intelligent Systems 16, 57–85 (2001)
Skowron, A., Stepaniuk, J., Peters, J.F.: Rough sets and infomorphisms: Towards approximation of relations in distributed environments. Fundamenta Informaticae 54(2,3), 263–277 (2003)
Skowron, A., Swiniarski, R.W.: Information granulation and pattern recognition. In: [19], pp. 599–636 (2004)
Skowron, A., Swiniarski, R., Synak, P.: Approximation spaces and information granulation. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 116–126. Springer, Heidelberg (2004)
Skowron, A., Stepaniuk, J.: Information granules in distributed environment. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 357–366. Springer, Heidelberg (1999)
Skowron, A., Stepaniuk, J.: Towards discovery of information granules. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 542–547. Springer, Heidelberg (1999)
Skowron, A., Stepaniuk, J.: Constraint sums in information systems. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 300–309. Springer, Heidelberg (2004)
Stepaniuk, J.: Approximation spaces, reducts and representatives. In: [43], pp. 109–126
Stone, P.: Layered Learning in Multiagent Systems. A Winning Approach to Robotic Soccer, The MIT Press, Cambridge (2000)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (1998)
Tinbergen, N.: On aims and methods of ethology. Zeitschrift für Tierpsychologie 20, 410–433 (1963)
Tinbergen, N.: Social Behavior in Animals with Special Reference to Vertebrates. The Scientific Book Club, London (1953)
Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.): RSFDGrC 2003. LNCS (LNAI), vol. 2639. Springer, Heidelberg (2003)
Watanabe, S.: Pattern Recognition: Human and Mechanical. Wiley, Toronto (1985)
WITAS project (2001), http://www.ida.liu.se/ext/witas/eng.html
Ziarko, W., Yao, Y. (eds.): RSCTC 2000. LNCS (LNAI), vol. 2005. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Peters, J.F. (2005). Rough Ethology: Towards a Biologically-Inspired Study of Collective Behavior in Intelligent Systems with Approximation Spaces. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets III. Lecture Notes in Computer Science, vol 3400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427834_7
Download citation
DOI: https://doi.org/10.1007/11427834_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25998-5
Online ISBN: 978-3-540-31850-7
eBook Packages: Computer ScienceComputer Science (R0)