Skip to main content

A Vector Field Visualization Technique for Self-organizing Maps

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3518))

Included in the following conference series:

  • 2676 Accesses

Abstract

The Self-Organizing Map is one of most prominent tools for the analysis and visualization of high-dimensional data. We propose a novel visualization technique for Self-Organizing Maps which can be displayed either as a vector field where arrows point to cluster centers, or as a plot that stresses cluster borders. A parameter is provided that allows for visualization of the cluster structure at different levels of detail. Furthermore, we present a number of experimental results using standard data mining benchmark data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  2. Lampinen, J., Oja, E.: Clustering properties of hierarchical self-organizing maps. Journal of Mathematical Imaging and Vision 2(2–3), 261–272 (1992)

    Article  MATH  Google Scholar 

  3. Oja, M., Kaski, S., Kohonen, T.: Bibliography of self-organizing map (SOM) papers: 1998-2001 addendum. Neural Computing Surveys 3, 1–156 (2001)

    Google Scholar 

  4. Pampalk, E., Rauber, A., Merkl, D.: Using smoothed data histograms for cluster visualization in self-organizing maps. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, p. 871. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Pölzlbauer, G., Rauber, A., Dittenbach, M.: A visualization technique for self-organizing maps with vector fields to obtain the cluster structure at desired levels of detail. In: International Joint Conference on Neural Networks (IJCNN 2005), Montréal, Canada (2005)

    Google Scholar 

  6. Rauber, A., Merkl, D.: Automatic labeling of self-organizing maps: Making a treasure-map reveal its secrets. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 228–237. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Ultsch, A.: Maps for the visualization of high-dimensional data spaces. In: Proc. Workshop on Self organizing Maps, Kyushu, Japan (2003)

    Google Scholar 

  8. Ultsch, A.: U*-matrix: a tool to visualize clusters in high dimensional data. Technical report, Departement of Mathematics and Computer Science, Philipps-University Marburg (2003)

    Google Scholar 

  9. Vesanto, J.: Data Exploration Process Based on the Self-Organizing Map. PhD thesis, Helsinki University of Technology (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pölzlbauer, G., Rauber, A., Dittenbach, M. (2005). A Vector Field Visualization Technique for Self-organizing Maps. In: Ho, T.B., Cheung, D., Liu, H. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2005. Lecture Notes in Computer Science(), vol 3518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11430919_47

Download citation

  • DOI: https://doi.org/10.1007/11430919_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26076-9

  • Online ISBN: 978-3-540-31935-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics