Abstract
The Self-Organizing Map is one of most prominent tools for the analysis and visualization of high-dimensional data. We propose a novel visualization technique for Self-Organizing Maps which can be displayed either as a vector field where arrows point to cluster centers, or as a plot that stresses cluster borders. A parameter is provided that allows for visualization of the cluster structure at different levels of detail. Furthermore, we present a number of experimental results using standard data mining benchmark data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2001)
Lampinen, J., Oja, E.: Clustering properties of hierarchical self-organizing maps. Journal of Mathematical Imaging and Vision 2(2–3), 261–272 (1992)
Oja, M., Kaski, S., Kohonen, T.: Bibliography of self-organizing map (SOM) papers: 1998-2001 addendum. Neural Computing Surveys 3, 1–156 (2001)
Pampalk, E., Rauber, A., Merkl, D.: Using smoothed data histograms for cluster visualization in self-organizing maps. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, p. 871. Springer, Heidelberg (2002)
Pölzlbauer, G., Rauber, A., Dittenbach, M.: A visualization technique for self-organizing maps with vector fields to obtain the cluster structure at desired levels of detail. In: International Joint Conference on Neural Networks (IJCNN 2005), Montréal, Canada (2005)
Rauber, A., Merkl, D.: Automatic labeling of self-organizing maps: Making a treasure-map reveal its secrets. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 228–237. Springer, Heidelberg (1999)
Ultsch, A.: Maps for the visualization of high-dimensional data spaces. In: Proc. Workshop on Self organizing Maps, Kyushu, Japan (2003)
Ultsch, A.: U*-matrix: a tool to visualize clusters in high dimensional data. Technical report, Departement of Mathematics and Computer Science, Philipps-University Marburg (2003)
Vesanto, J.: Data Exploration Process Based on the Self-Organizing Map. PhD thesis, Helsinki University of Technology (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pölzlbauer, G., Rauber, A., Dittenbach, M. (2005). A Vector Field Visualization Technique for Self-organizing Maps. In: Ho, T.B., Cheung, D., Liu, H. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2005. Lecture Notes in Computer Science(), vol 3518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11430919_47
Download citation
DOI: https://doi.org/10.1007/11430919_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26076-9
Online ISBN: 978-3-540-31935-1
eBook Packages: Computer ScienceComputer Science (R0)