Abstract
Covariances from categorical variables are defined using a regular simplex expression for categories. The method follows the variance definition by Gini, and it gives the covariance as a solution of simultaneous equations using the Newton method. The calculated results give reasonable values for test data. A method of principal component analysis (RS-PCA) is also proposed using regular simplex expressions, which allows easy interpretation of the principal components.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Buekenhout, F., Parker, M.: The number of nets of the regular convex polytopes in dimension ≤ 4. Disc. Math. 186, 69–94 (1998)
Buntine, W.: Variational extensions to EM and multinomial PCA. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 23–34. Springer, Heidelberg (2002)
Clausen, S.-E.: Applied correspondence analysis: an introduction. Sage Publ., Thousand Oaks (1998)
Diamantaras, K., Kung, S.: Principal Component Neural Networks. Wiley, New York (1996)
Fisher, R.A.: The precision of discriminant functions. Annals of Eugenics (London) 10, 422–429 (1940)
Gini, C.W.: Variability and Mutability, contribution to the study of statistical distributions and relations. Studi Economico-Giuridici della R. Universita de Cagliari (1912); Reviewed in: Light, R.J., Margolin, B.H.: An Analysis of Variance for Categorical Data. J. American Statistical Association 66, 534–544 (1971)
Gower, J.C., Hand, D.J.: Biplot. Chapman and Hall, London (1996)
Okada, T.: A note on covariances for categorical data. In: Leung, K.-S., Chan, L., Meng, H. (eds.) IDEAL 2000. LNCS, vol. 1983, pp. 150–157. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Niitsuma, H., Okada, T. (2005). Covariance and PCA for Categorical Variables. In: Ho, T.B., Cheung, D., Liu, H. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2005. Lecture Notes in Computer Science(), vol 3518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11430919_61
Download citation
DOI: https://doi.org/10.1007/11430919_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26076-9
Online ISBN: 978-3-540-31935-1
eBook Packages: Computer ScienceComputer Science (R0)