Abstract
Constraint-based mining is an active field of research which is a key point to get interactive and successful KDD processes. Nevertheless, usual solvers are limited to particular kinds of constraints because they rely on properties to prune the search space which are incompatible together. In this paper, we provide a general framework dedicated to a large set of constraints described by SQL-like and syntactic primitives. This set of constraints covers the usual classes and introduces new tough and flexible constraints. We define a pruning operator which prunes the search space by automatically taking into account the characteristics of the constraint at hand. Finally, we propose an algorithm which efficiently makes use of this framework. Experimental results highlight that usual and new complex constraints can be mined in large datasets.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pp. 432–444 (1994)
Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: Proceedings of ICDM 2004, pp. 35–42 (2004)
Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation of boolean data for the approximation of frequency queries. Data Mining and Knowledge Discovery journal 7(1), 5–22 (2003)
Calders, T., Goethals, B.: Minimal k-free representations of frequent sets. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 71–82. Springer, Heidelberg (2003)
De Raedt, L., Jäger, M., Lee, S.D., Mannila, H.: A theory of inductive query answering. In: Proceedings of ICDM 2002, Maebashi, Japan, pp. 123–130 (2002)
Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and differences. In: Knowledge Discovery and Data Mining, pp. 43–52 (1999)
Gade, K., Wang, J., Karypis, G.: Efficient closed pattern mining in the presence of tough block constraints. In: Proceedings of ACM SIGKDD, pp. 138–147 (2004)
Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. In: Communication of the ACM, pp. 58–64 (1996)
Jeudy, B., Rioult, F.: Database transposition for constrained (closed) pattern mining. In: Goethals, B., Siebes, A. (eds.) KDID 2004. LNCS, vol. 3377, pp. 89–107. Springer, Heidelberg (2005)
Kiefer, D., Gehrke, J., Bucila, C., White, W.: How to quickly find a witness. In: Proceedings of ACM SIGMOD/PODS 2003 Conference, pp. 272–283 (2003)
Kryszkiewicz, M.: Inferring knowledge from frequent patterns. In: Bustard, D.W., Liu, W., Sterritt, R. (eds.) Soft-Ware 2002. LNCS, vol. 2311, pp. 247–262. Springer, Heidelberg (2002)
Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)
Ng, R.T., Lakshmanan, L.V.S., Han, J.: Exploratory mining and pruning optimizations of constrained associations rules. In: Proceedings of SIGMOD (1998)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. LNCS. Springer, Heidelberg (1999)
Pei, J., Han, J., Lakshmanan, L.V.S.: Mining frequent item sets with convertible constraints. In: Proceedings of ICDE, pp. 433–442 (2001)
Soulet, A., Crémilleux, B., Rioult, F.: Condensed representation of emerging patterns. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 127–132. Springer, Heidelberg (2004)
Soulet, A., Crémilleux, B.: A general framework designed for constraint-based mining. Technical report, Université de Caen, Caen, France (2004)
Wang, K., Jiang, Y., Yu, J.X., Dong, G., Han, J.: Pushing aggregate constraints by divide-and-approximate. In: Proceedings of ICDE, pp. 291–302 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Soulet, A., Crémilleux, B. (2005). An Efficient Framework for Mining Flexible Constraints. In: Ho, T.B., Cheung, D., Liu, H. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2005. Lecture Notes in Computer Science(), vol 3518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11430919_76
Download citation
DOI: https://doi.org/10.1007/11430919_76
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26076-9
Online ISBN: 978-3-540-31935-1
eBook Packages: Computer ScienceComputer Science (R0)