Abstract
Enabling natural human-robot interaction using computer vision based applications requires fast and accurate hand detection. However, previous works in this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects difficult to locate. This paper presents an approach which integrates temporal coherence cues and hand detection based on wrists using a cascade classifier. With this approach, we introduce three main contributions: (1) a transparent initialization mechanism without user participation for segmenting hands independently of their gesture, (2) a larger number of detected gestures as well as a faster training phase than previous cascade classifier based methods and (3) near real-time performance for hand pose detection in video streams.
This work has been supported by the Spanish Government, the Canary Islands Autonomous Government and the Univ. of Las Palmas de G.C. under projects TIN2004-07087, PI20003/165 and UNI2003/06.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Viola, P., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. IEEE Computer Vision and Pattern Recognition 1, 511–518 (2001)
Isard, M., Blake, A.: Condensation - Conditional density propagation for visual tracking. International. Journal of Computer Vision 29(1), 5–28 (1998)
Brethes, L., Menezes, P., Lerasle, L., Hayet, J.: Face tracking hand gesture recognition for human-robot interaction. In: Brethes, L., Menezes, P., Lerasle, L., Hayet, J. (eds.) IEEE International Conference on Robotics and Automation, New Orleans, April 26-May 1 (2004)
Triesch, J., von der Malsburg, C.: A System for Person-Independent Hand Posture Recognition against complex backgrounds. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(12), 1449–1453 (2001)
Rehg, J.M., Kanade, T.: Visual tracking of high DOF articulated structures: an application to human hand tracking. In: 3rd Proc. European Conference on Computer Vision, vol. II, pp. 35–46
Spengler, M., Schiele, B.: Towards robust multi-cue integration for visual tracking. Machine Vision and Applications 14, 50–58 (2003)
Stenger, B., Thayananthan, A., Torr, P., Cipolla, R.: Hand Pose Estimation using Hierarchical Detection. In: Sebe, N., Lew, M., Huang, T.S. (eds.) ECCV/HCI 2004. LNCS, vol. 3058, pp. 102–112. Springer, Heidelberg (2004)
Kösch, M., Turk, M.: Robust hand detection. In: 6th IEEE International Conference on Automatic Face and Gesture Recognition, Korea, May 17-19 (2004)
Barreto, J., Menezes, P., Dias, J.: Human-Robot Interation based on Haar-like Features and Eigenfaces. In: IEEE International Conference on Robotics and Automation, New Orleans, April 26-May 1 (2004)
Kösch, M., Turk, M.: Analysis of Rotational Robustness of Hand Detection with a Viola-Jones Detector. In: IAPR International Conference of Pattern Recognition (2004)
Kruppa, H., Catrillón, M., Schiele, B.: Fast and Robust Face Finding via Local Context. In: Joint IEEE International Workshop on VS_PETS, Nice, France (2003)
Rogers Peck, S.: Atlas of Human Anatomy for the Artist. Oxford University Press, Inc, USA (1982) ISBN: 01950309858
Guerra Artal, C.: Contributions to visual precategoric tracking. Phd thesis, University of Las Palmas G.C. (2002)
Edelman, S.: Representation and Recognition in Vision. The MIT Press, Cambridge (1999)
Triesch, J.: Hand Posture Database I, II, http://www.idiap.ch/~marcel/Databases
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Antón-Canalís, L., Sánchez-Nielsen, E., Castrillón-Santana, M. (2005). Fast and Accurate Hand Pose Detection for Human-Robot Interaction. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds) Pattern Recognition and Image Analysis. IbPRIA 2005. Lecture Notes in Computer Science, vol 3522. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11492429_67
Download citation
DOI: https://doi.org/10.1007/11492429_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26153-7
Online ISBN: 978-3-540-32237-5
eBook Packages: Computer ScienceComputer Science (R0)