Skip to main content

Fast and Accurate Hand Pose Detection for Human-Robot Interaction

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3522))

Included in the following conference series:

  • 2080 Accesses

Abstract

Enabling natural human-robot interaction using computer vision based applications requires fast and accurate hand detection. However, previous works in this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects difficult to locate. This paper presents an approach which integrates temporal coherence cues and hand detection based on wrists using a cascade classifier. With this approach, we introduce three main contributions: (1) a transparent initialization mechanism without user participation for segmenting hands independently of their gesture, (2) a larger number of detected gestures as well as a faster training phase than previous cascade classifier based methods and (3) near real-time performance for hand pose detection in video streams.

This work has been supported by the Spanish Government, the Canary Islands Autonomous Government and the Univ. of Las Palmas de G.C. under projects TIN2004-07087, PI20003/165 and UNI2003/06.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Viola, P., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. IEEE Computer Vision and Pattern Recognition 1, 511–518 (2001)

    Google Scholar 

  2. Isard, M., Blake, A.: Condensation - Conditional density propagation for visual tracking. International. Journal of Computer Vision 29(1), 5–28 (1998)

    Article  Google Scholar 

  3. Brethes, L., Menezes, P., Lerasle, L., Hayet, J.: Face tracking hand gesture recognition for human-robot interaction. In: Brethes, L., Menezes, P., Lerasle, L., Hayet, J. (eds.) IEEE International Conference on Robotics and Automation, New Orleans, April 26-May 1 (2004)

    Google Scholar 

  4. Triesch, J., von der Malsburg, C.: A System for Person-Independent Hand Posture Recognition against complex backgrounds. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(12), 1449–1453 (2001)

    Article  Google Scholar 

  5. Rehg, J.M., Kanade, T.: Visual tracking of high DOF articulated structures: an application to human hand tracking. In: 3rd Proc. European Conference on Computer Vision, vol. II, pp. 35–46

    Google Scholar 

  6. Spengler, M., Schiele, B.: Towards robust multi-cue integration for visual tracking. Machine Vision and Applications 14, 50–58 (2003)

    Article  Google Scholar 

  7. Stenger, B., Thayananthan, A., Torr, P., Cipolla, R.: Hand Pose Estimation using Hierarchical Detection. In: Sebe, N., Lew, M., Huang, T.S. (eds.) ECCV/HCI 2004. LNCS, vol. 3058, pp. 102–112. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Kösch, M., Turk, M.: Robust hand detection. In: 6th IEEE International Conference on Automatic Face and Gesture Recognition, Korea, May 17-19 (2004)

    Google Scholar 

  9. Barreto, J., Menezes, P., Dias, J.: Human-Robot Interation based on Haar-like Features and Eigenfaces. In: IEEE International Conference on Robotics and Automation, New Orleans, April 26-May 1 (2004)

    Google Scholar 

  10. Kösch, M., Turk, M.: Analysis of Rotational Robustness of Hand Detection with a Viola-Jones Detector. In: IAPR International Conference of Pattern Recognition (2004)

    Google Scholar 

  11. Kruppa, H., Catrillón, M., Schiele, B.: Fast and Robust Face Finding via Local Context. In: Joint IEEE International Workshop on VS_PETS, Nice, France (2003)

    Google Scholar 

  12. Rogers Peck, S.: Atlas of Human Anatomy for the Artist. Oxford University Press, Inc, USA (1982) ISBN: 01950309858

    Google Scholar 

  13. Guerra Artal, C.: Contributions to visual precategoric tracking. Phd thesis, University of Las Palmas G.C. (2002)

    Google Scholar 

  14. Edelman, S.: Representation and Recognition in Vision. The MIT Press, Cambridge (1999)

    Google Scholar 

  15. Triesch, J.: Hand Posture Database I, II, http://www.idiap.ch/~marcel/Databases

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antón-Canalís, L., Sánchez-Nielsen, E., Castrillón-Santana, M. (2005). Fast and Accurate Hand Pose Detection for Human-Robot Interaction. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds) Pattern Recognition and Image Analysis. IbPRIA 2005. Lecture Notes in Computer Science, vol 3522. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11492429_67

Download citation

  • DOI: https://doi.org/10.1007/11492429_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26153-7

  • Online ISBN: 978-3-540-32237-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics