Abstract
Hyperspectral applications in remote sensing are often focused on determining the so-called spectral signatures, i.e., the reflectances of materials present in the scene (endmembers) and the corresponding abundance fractions at each pixel in a spatial area of interest. The determination of the number of endmembers in a scene without any prior knowledge is crucial to the success of hyperspectral image analysis. This paper proposes a new mean squared error approach to determine the signal subspace in hyperspectral imagery. The method first estimates the signal and noise correlations matrices, then it selects the subset of eigenvalues that best represents the signal subspace in the least square sense.
This work was supported by the FCT, under the projects POSI/34071/CPS/2000 and PDCTE/CPS/49967/2003 and by DEETC of ISEL.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Keshava, N., Mustard, J.: Spectral unmixing. IEEE Sig. Proc. Mag. 19, 44–57 (2002)
Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Rem. Sens. and Image Interp, 5th edn. John Wiley & Sons, Inc., Chichester (2004)
Vane, G., Green, R., Chrien, T., Enmark, H., Hansen, E., Porter, W.: The airborne visible/infrared imaging spectrometer (AVIRIS). Rem. Sens. of the Environ. 44, 127–143 (1993)
Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice Hall, N.J., Englewood Cliffs (1988)
Jolliffe, I.T.: Principal Component Analysis. Spriger, New York (1986)
Green, A., Berman, M., Switzer, P., Craig, M.D.: A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Rem. Sens. 26, 65–74 (1994)
Lee, J.B., Woodyatt, S., Berman, M.: Enhancement of high spectral resolution remote-sensing data by noise-adjusted principal components transform. IEEE Trans. Geosci. Rem. Sens. 28, 295–304 (1990)
Bruske, J., Sommer, G.: Intrinsic dimensionality estimation with optimaly topologic preserving maps. IEEE Trans. PAMI. 20, 572–575 (1998)
Demartines, P., Hérault, J.: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Networks 8, 148–154 (1997)
Lennon, M., Mercier, G., Mouchot, M., Hubert-Moy, L.: Curvilinear component analysis for nonlinear dimensionality reduction of hyperspectral images. In: Proc. of the SPIE., vol. 4541 (2001)
Chang, C.I.: Hyperspectral Imaging: Techniques for spectral detection and classification. Kluwer Academic, New York (2003)
Scharf, L.L.: Statistical Signal Processing. Detection Estimation and Time Series Analysis. Addison-Wesley Pub. Comp, Reading (1991)
Manolakis, D., Siracusa, C., Shaw, G.: Hyperspectral subpixel target detection using linear mixing model. IEEE Trans. Geosci. Rem. Sens. 39, 1392–1409 (2001)
Roger, R., Arnold, J.: Reliably estimating the noise in aviris hyperspectral imagers. International J. of Rem. Sens. 17, 1951–1962 (1996)
Clark, R.N., Swayze, G.A., Gallagher, A., King, T.V., Calvin, W.M.: The u.s.g.s. digital spectral library: Version 1: 0.2 to 3.0 μm. Open file report 93-592, U.S.G.S. (1993)
Swayze, G., Clark, R., Sutley, S., Gallagher, A.: Ground-truthing aviris mineral mapping at cuprite, nevada. In: Summaries of the Third Annual JPL Airborne Geosciences Workshop, vol. 1, pp. 47–49 (1992)
Ashley, R., Abrams, M.: Alteration mapping using multispectral images - cuprite mining district, esmeralda county. Open file report 80-367, U.S.G.S. (1980)
Abrams, M., Ashley, R., Rowan, L., Goetz, A., Kahle, A.: Mapping of hydrothermal alteration in the cuprite mining district, nevada, using aircraft scanner images for the spectral region 0.46 to 2.36mm. Geology 5, 713–718 (1977)
Goetz, A., Strivastava, V.: Mineralogical mapping in the cuprite mining district. In: Proc. of the Airborne Imaging Spectrometer Data Analysis Workshop, pp. 22–29. JPL Publication 85-41 (1985)
Kruse, F., Boardman, J., Huntington, J.: Comparison of airborne and satellite hyperspectral data for geologic mapping. In: Proc. of SPIE, vol. 4725, pp. 128–139 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nascimento, J.M.P., Dias, J.M.B. (2005). Signal Subspace Identification in Hyperspectral Linear Mixtures. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds) Pattern Recognition and Image Analysis. IbPRIA 2005. Lecture Notes in Computer Science, vol 3523. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11492542_26
Download citation
DOI: https://doi.org/10.1007/11492542_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26154-4
Online ISBN: 978-3-540-32238-2
eBook Packages: Computer ScienceComputer Science (R0)