Skip to main content

Multispectral Image Segmentation by Energy Minimization for Fruit Quality Estimation

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3523))

Included in the following conference series:

Abstract

This article presents the results of an unsupervised segmentation algorithm in multispectral images. The algorithm uses a minimization function which takes into account each band intensity information together with global edge criterion. Due to the unsupervised nature of the procedure, it can adapt itself to the huge variability of intensities and shapes of the image regions. Results shows the effectiveness of the method in multispectral fruit inspection applications and in remote sensing tasks.

This work has been partly supported by grants DPI2001-2956-C02-02 from Spanish CICYT and IST-2001-37306 from the European Union

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brook, A., Kimmel, R., Sochen, N.A.: Variational restoration and edge detection for color images. Journal of Mathematical Imaging and Vision 18(3), 247–268 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hewer, G.A., Kenney, C., Manjunath, B.S.: Variational image segmentation using boundary functions. IEEE Transactions on Image Processing 7(9), 1269–1282 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Jimenez, L.O., Landgrebe, A.: Hyperspectral data analysis and supervised feature reduction via projection pursuit. IEEE TGRS 37(6), 2653–2667 (1999)

    Google Scholar 

  4. Martínez-Usó, A., Pla, F., García-Sevilla, P.: Color image segmentation using energy minimization on a quadtree representation. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 25–32. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Montoliu, R., Pla, F., Klaren, A.K.: Multispectral invariants. Technical Report, DLSI, Universitat Jaume I, Castellon, Spain (2004)

    Google Scholar 

  6. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. CPAM 42(4) (1989)

    Google Scholar 

  7. Sotoca, J.M., Pla, F., Klaren, A.K.: Unsupervised band selection for multispectral images using information theory. In: ICPR (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez-Usó, A., Pla, F., García-Sevilla, P. (2005). Multispectral Image Segmentation by Energy Minimization for Fruit Quality Estimation. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds) Pattern Recognition and Image Analysis. IbPRIA 2005. Lecture Notes in Computer Science, vol 3523. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11492542_84

Download citation

  • DOI: https://doi.org/10.1007/11492542_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26154-4

  • Online ISBN: 978-3-540-32238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics