Abstract
This article presents the results of an unsupervised segmentation algorithm in multispectral images. The algorithm uses a minimization function which takes into account each band intensity information together with global edge criterion. Due to the unsupervised nature of the procedure, it can adapt itself to the huge variability of intensities and shapes of the image regions. Results shows the effectiveness of the method in multispectral fruit inspection applications and in remote sensing tasks.
This work has been partly supported by grants DPI2001-2956-C02-02 from Spanish CICYT and IST-2001-37306 from the European Union
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brook, A., Kimmel, R., Sochen, N.A.: Variational restoration and edge detection for color images. Journal of Mathematical Imaging and Vision 18(3), 247–268 (2003)
Hewer, G.A., Kenney, C., Manjunath, B.S.: Variational image segmentation using boundary functions. IEEE Transactions on Image Processing 7(9), 1269–1282 (1998)
Jimenez, L.O., Landgrebe, A.: Hyperspectral data analysis and supervised feature reduction via projection pursuit. IEEE TGRS 37(6), 2653–2667 (1999)
Martínez-Usó, A., Pla, F., García-Sevilla, P.: Color image segmentation using energy minimization on a quadtree representation. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 25–32. Springer, Heidelberg (2004)
Montoliu, R., Pla, F., Klaren, A.K.: Multispectral invariants. Technical Report, DLSI, Universitat Jaume I, Castellon, Spain (2004)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. CPAM 42(4) (1989)
Sotoca, J.M., Pla, F., Klaren, A.K.: Unsupervised band selection for multispectral images using information theory. In: ICPR (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martínez-Usó, A., Pla, F., García-Sevilla, P. (2005). Multispectral Image Segmentation by Energy Minimization for Fruit Quality Estimation. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds) Pattern Recognition and Image Analysis. IbPRIA 2005. Lecture Notes in Computer Science, vol 3523. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11492542_84
Download citation
DOI: https://doi.org/10.1007/11492542_84
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26154-4
Online ISBN: 978-3-540-32238-2
eBook Packages: Computer ScienceComputer Science (R0)