Skip to main content

Minimum Basin Algorithm: An Effective Analysis Technique for DNA Energy Landscapes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3384))

Abstract

To design DNA nano-machines or analyze DNA molecular reactions, it is important to be able to predict the energy landscape of molecular structures and the energy barrier of a transition between structures on the landscape. Unfortunately, this is difficult for DNA molecules longer than 100 bases. In this paper, we propose an effective new technique for analyzing a structural transition over a DNA energy landscape. Imagine a very undulating landscape. Suddenly, water starts to gush out from one site and keeps flowing. How will the water surface expand over the landscape? Using a variant of Dijkstra’s and Jarník-Prim’s algorithms, we generate the shape of the basin from its formation process. The resulting basin contains the true energy barrier. Furthermore, a comparison between the basin feature and the corresponding actual chemical reaction shows that the basin can be used as a criterion to explain the reaction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, J., et al.: Word design for molecular information processing. Zeitschrift für Naturforschung 58a, 157–161 (2003)

    Google Scholar 

  2. Andronescu, M., et al.: RNAsoft: a suite of RNA secondary structure prediction and design software tools. Nucl. Acids. Res. 31, 3416–3422 (2003)

    Article  Google Scholar 

  3. Andronescu, M., et al.: Algorithms for testing that sets of DNA words concatenate without secondary structure. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 182–195. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Cupal, J., et al.: Density of States, Metastable States, and Saddle Points Exploring the Energy Landscape of an RNA Molecule. In: Proc. of 5th Int. Conference on Intelligent Systems for Molecular Biology (ISMB 1997), pp. 88–91 (1997)

    Google Scholar 

  5. Deaton, R., et al.: A Software Tool for Generating Non-crosshybridizing Libraries of DNA Oligonucleotides. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 252–261. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Flamm, C., et al.: Barrier Trees of Degenerate Landscapes. Z. Phys. Chem. 216, 155–173 (2002)

    Google Scholar 

  7. Flamm, C., et al.: Design of multistable RNA molecules. RNA 7, 254–265 (2001)

    Article  Google Scholar 

  8. Flamm, C., et al.: RNA folding at elementary step resolution. RNA 6, 325–338 (2000)

    Article  Google Scholar 

  9. Flamm, C.: Kinetic Folding of RNA. PhD Thesis, University of Vienna, Austria (1998)

    Google Scholar 

  10. Fontana, W., et al.: Statistics of RNA secondary structures. Biopolymers 33, 1389–1404 (1993)

    Article  Google Scholar 

  11. Hagiya, M.: Towards Molecular Programming. Modeling in Molecular Biology, Springer Natural Computing Series (2003) (in press)

    Google Scholar 

  12. Heitsch, C.E., et al.: From RNA Secondary Structure to Coding Theory: A Combinatorial Approach. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 215–228. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Hofacker, I.L., et al.: Fast Folding and Comparison of RNA Secondary Structures. Monatshefte für Chemie 125, 167–188 (1994)

    Article  Google Scholar 

  14. McCaskill, J.S.: The Equilibrium Partition Function and Base Pair Binding Probabilities for RNA Secondary Structure. Biopolymers 29, 1105–1119 (1990)

    Article  Google Scholar 

  15. Morgan, S.R., et al.: Barrier heights between ground states in a model of RNA secondary structure. J. Phys. A: Math. Gen. 31, 3153–3170 (1998)

    Article  MATH  Google Scholar 

  16. Kameda, A., et al.: Conformational addressing using the hairpin structure of single-strand DNA. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 219–224. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Kobayashi, S., et al.: An Algorithm for Testing Structure Freeness of Biomolecular Sequences. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 266–277. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Kubota, M., et al.: Branching DNA Machines Based on Transitions of Hairpin Structures. In: Proc. of the 2003 Congress on Evolutionary Computation (CEC 2003), vol. 4, pp. 2542–2548 (2003)

    Google Scholar 

  19. SantaLucia Jr., J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 95, 1460–1465 (1998)

    Article  Google Scholar 

  20. Stadler, P.F., et al.: Barrier Trees on Poset-Valued Landscapes. J. Gen. Prog. Evol. Machines 4, 7–20 (2003)

    Article  MATH  Google Scholar 

  21. Tinoco Jr, I., et al.: Estimation of secondary structure in ribonucleic acids. Nature 230, 362–367 (1971)

    Article  Google Scholar 

  22. Uejima, H., et al.: Secondary Structure Design of Multi-state DNA Machine Based on Sequential Structure Transitions. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 74–85. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Uejima, H., et al.: Analyzing Secondary Structure Transition Paths of DNA/RNA molecules. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 86–90. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Wuchty, S., et al.: Complete Suboptimal Folding of RNA and the Stability of Secondary Structures. Biopolymers 49, 145–165 (1999)

    Article  Google Scholar 

  25. Yurke, B., et al.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  26. Zuker, M., et al.: Optimal computer folding of large RNA sequences using thermodynamic and auxiliary information. Nucl. Acids. Res. 9, 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kubota, M., Hagiya, M. (2005). Minimum Basin Algorithm: An Effective Analysis Technique for DNA Energy Landscapes. In: Ferretti, C., Mauri, G., Zandron, C. (eds) DNA Computing. DNA 2004. Lecture Notes in Computer Science, vol 3384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11493785_18

Download citation

  • DOI: https://doi.org/10.1007/11493785_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26174-2

  • Online ISBN: 978-3-540-31844-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics