Abstract
Thermodynamic distance functions are important components in the construction of DNA codes and DNA codewords are structural and information building blocks in biomolecular computing and other biotechnical applications that employ DNA hybridization assays. We introduce new metrics for DNA code design that capture key aspects of the nearest neighbor thermodynamic model for hybridized DNA duplexes. One version of our metric gives the maximum number of stacked pairs of hydrogen bonded nucleotide base pairs that can be present in any secondary structure in a hybridized DNA duplex without pseudoknots. We introduce the concept of (t-gap) block isomorphic subsequences to describe new string metrics that are similar to the weighted Levenshtein insertion-deletion metric. We show how our new distances can be calculated by a generalization of the folklore longest common subsequence dynamic programming algorithm. We give a Varshamov-Gilbert like lower bound on the size of some of codes using our distance functions as constraints. We also discuss software implementation of our DNA code design methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andronescu, M., Condon, A., Hoos, H.: RNAsoft. submitted to NAR for the web-based software special issue, available at, http://www.rnasoft.ca/
Andronescu, M.: Algorithms for predicting the secondary structure of pairs and combinatorial sets of nucleic acid strands, Masters Thesis, University of British Columbia (2003)
Baum, E.: DNA sequences useful for computation. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 44, 235–242 (1999)
Brenneman, A., Condon, A.: Strand Design for biomolecular computation. Theoretical Computer Science 287, 39–58 (2002)
Cai, H., et al.: Flow Cytometry-Based Minisequencing: A New Platform for High Throughput Single Nucleotide Polymorphism Scoring. Genomics 66, 135–143 (2000)
D’yachkov, A., Torney, D.: On Similarity Codes. IEEE Trans. on Information Theory 46, 1558–1564 (2000)
Deaton, R., et al.: A PCR Based Protocol for in Vitro Selection of Noncrosshybridizing Oligonucleotides. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 196–204. Springer, Heidelberg (2003)
Deaton, R., et al.: A Software Tool for Generating Noncrosshybridizing Libraries of DNA Oligonucleotides. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 252–261. Springer, Heidelberg (2003)
D’yachkov, A., et al.: On a Class of Codes for Insertion-Deletion Metric. In: IEEE Intl. Symp. Info. Th., Lausanne, Switzerland (2002)
D’yachkov, A., et al.: Exordium for DNA Codes. Journal of Combinatorial Optimization 7(4), 369–380 (2003)
D’yachkov, A., et al.: Reverse-Complement Similarity Codes. IEEE Trans.on Information Theory (to appear)
D’yachkov, A., et al.: An Insertion-Deletion Like Metric, manuscript
Erdos, P., Torney, D., Sziklai, P.: A Finite Word Poset. Elec. J. of Combinatorics 8 (2001)
Garzon, M., et al.: A new metric for DNA computing, in Genetic Programming 1997. In: Proceedings of the Second Annual Conference, Stanford University, July 13-16, pp. 479–490. AAAI, Menlo Park (1997)
Gusfield, D.: Algorithms on Strings, Trees, and Sequences, Cambridge (1997)
Hartemink, A., Gifford, D.: A thermodynamic simulation of deoxyoligonucleotide hybridization for DNA computation. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 48, 25–37 (1999)
Hollman, H.: A relation between Levenshtein-type distances and insertion and deletion correcting capabilities of codes. IEEE Trans. on Information Theory 39, 1424–1427 (1993)
Levenshtein, V.: Efficient reconstruction of sequences from their subsequences or supersequences. Journal of Combinatorial Theory, Series A 93, 310–332 (2001)
Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions, and Reversals. Soviet Phys.–Doklady 10, 707–710 (1966)
Levenshtein, V.: Bounds for Deletion-Insertion Correcting Codes. In: 2002 IEEE Intl. Symp. Info. Th., Lausanne, Switzerland (2002)
Macula, A.: DNA-TAT Codes, USAF Technical Report, TR-2003-57, AFRL-IF-RS (2003), http://stinet.dtic.mil/cgi-bin/fulcrum_main.pl
Macula, A., et al.: DNA Code Gen., available at, https://community.biospice.org
SantaLucia Jr., J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. In: Proc. Natl. Acad. Sci., USA, vol. 95, pp. 1460–1465 (1998)
Waterman, M.: Introduction to Computational Biology. Chapman-Hall, London (1995)
Zuker, A., Mathews, B., Turner, C.: Algorithms and Thermodynamics for RNA Secondary Structure Prediction: a Practical Guide
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
D’yachkov, A.G., Macula, A.J., Pogozelski, W.K., Renz, T.E., Rykov, V.V., Torney, D.C. (2005). A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric for DNA Codes. In: Ferretti, C., Mauri, G., Zandron, C. (eds) DNA Computing. DNA 2004. Lecture Notes in Computer Science, vol 3384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11493785_8
Download citation
DOI: https://doi.org/10.1007/11493785_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26174-2
Online ISBN: 978-3-540-31844-6
eBook Packages: Computer ScienceComputer Science (R0)