Skip to main content

Abstract

In this paper, we present a method for solving Mixed Logical/ Integer Linear Programming (MLILP) problems that integrates a polynomial-time ILP solver for the special class of Unit-Two-Variable-Per-Inequality (unit TVPI or UTVPI) constraints of the form ax + byd, where a, b ∈ {-1, 0, 1}, into generic Boolean SAT solvers. In our approach the linear constraints are viewed as special literals and replaced by binary “indicator” variables to generate a pure logical problem. The resulting problem is subsequently solved using a SAT search procedure which invokes the linear UTVPI solver to incrementally check the consistency of the UTVPI constraints whenever any of the indicator variables are assigned to true. The linear UTVPI solver, on the other hand, can possibly pass implications or no-good constraints to the Boolean SAT solver. Checking the consistency of the UTVPI constraints incrementally enables the UTVPI solver to efficiently interact with the different components of the SAT solver. Additionally, several heuristics and encoding methods are proposed to accommodate the special circumstances of activating UTVPI constraints by the SAT solver. Empirical evidence is presented that demonstrates the advantages of our combined method for large problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Generic ILP versus Specialized 0-1 ILP: an Update. In: ICCAD, pp. 450–457 (2002)

    Google Scholar 

  2. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126, 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Applegate, D., Cook, B.: A Computational Study of the Job Shop Scheduling Problem. ORSA Journal on Computing 3(2), 149–156 (1991)

    MATH  Google Scholar 

  4. Audemard, G., Bertoli, P., Cimatti, A., Kornilowics, A., Sebastiani, R.: A SATBased Approach for Solving Formulas over Boolean and Linear Mathematical Propositions. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 193–208. Springer, Heidelberg (2002)

    Google Scholar 

  5. Barrett, C., Dill, D., Levitt, J.: Validity Checking for Combinations of Theories with Equality. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 187–201. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  6. Bemporad, A., Giorgetti, N.: SAT-based Branch & Bound and Optimal Control of Hybrid Dynamical Systems. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 96–111. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Ben Salah, R., Bozga, M., Maler, O.: On Timing Analysis of Combinational Circuits. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253. Springer, Heidelberg (2004)

    Google Scholar 

  8. Brzozowski, J.A., Seger, C.J.H.: Asynchronous Circuits. Springer, Heidelberg (1994)

    Google Scholar 

  9. Dash Inc., XPRESS-MP 15.25.03, http://www.dashoptimization.com

  10. Davis, M., Putnam, H.: A Computing Procedure for Qualification Theory. Journal of the ACM 7, 102–215 (1960)

    Article  MathSciNet  Google Scholar 

  11. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving. Communications of the ACM 7, 394–397 (1962)

    Article  MathSciNet  Google Scholar 

  12. Dell’Amico, M., Trubian, M.: Applying Tabu Search to the Job-Shop Scheduling Problem. Annals of Operations Research 41, 231–252 (1993)

    Article  MATH  Google Scholar 

  13. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Grossmann, I.E., Kravanja, Z.: Mixed Integer Nonlinear Programming: A Survey of Algorithms and Applications. In: Large-Scale Optimization with Applications, Part II: Optimal Design Control, pp. 73–100. Springer, Heidelberg (1997)

    Google Scholar 

  15. Grossmann, I.E., Sahinidis, N.V. (eds.): Special Issue on Mixed Integer Programming and its Application to Engineering, Part I/II, Optim. and Engin. (2002)

    Google Scholar 

  16. Hooker, J.N.: Logic-based Methods for Optimization: Combining Optimization and Constraint Satisfaction. Wiley, Chichester (2002)

    Google Scholar 

  17. Hooker, J.N., Ottosson, G., Thorsteinsson, E.S., Kim, H.: On Integrating Constraint Propagation and Linear Programming for Combinatorial Optimization, pp. 136–141. AAAI, Menlo Park (1999)

    Google Scholar 

  18. ILOG CPLEX, http://www.ilog.com/products/cplex

  19. Jaffar, J., Maher, M., Suckey, P., Yap, R.: Beyond Finite Domains. In: Workshop on Principles and Practice of Constraint Programming (1994)

    Google Scholar 

  20. Lawrence, S.: Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques (Supplement). Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA (1984)

    Google Scholar 

  21. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Trans. on Computers 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  22. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: DAC, pp. 530–535 (2001)

    Google Scholar 

  23. Raman, R., Grossmann, I.E.: Modelling and Computational Techniques for Logic Based Integer Programming. Computers and Chemical Engineering 18 (1994)

    Google Scholar 

  24. Shostak, R.: Deciding Linear Inequalities by Computing Loop Residues. Journal of the ACM 28(4), 769–779 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  25. Seshia, S., Bryant, R.: Deciding Quantifier-Free Presburger Formulas Using Parameterized Solution Bounds. In: LICS, pp. 100–109 (2004)

    Google Scholar 

  26. Wagner, D., Foster, J.S., Brewer, E.A., Aiken, A.: A First Step Towards Detection of Buffer Overrun Vulnerabilities. In: Network and Distributed System Security Symposium, Internet Society (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sheini, H.M., Sakallah, K.A. (2005). A SAT-Based Decision Procedure for Mixed Logical/Integer Linear Problems. In: Barták, R., Milano, M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2005. Lecture Notes in Computer Science, vol 3524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11493853_24

Download citation

  • DOI: https://doi.org/10.1007/11493853_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26152-0

  • Online ISBN: 978-3-540-32264-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics