Abstract
Left ventricular hypertrophy induces remodeling of various ion channels and prolongs depolarization of the ventricles. We modified a model of electrical activity of rat ventricular cell by incorporating available experimental data. Hypertrophy was modeled by incorporating experimental data of changes in sodium (INa), hyperpolarizing (If), outward transient potassium (Ito) and T-type calcium currents channel kinetics (ICaT), cell size and Ca2 + handling. In 1D simulations, a continuous increase in action potential duration (APD) and corresponding decrease in conduction velocity (CV) with subsequent beats was observed, resulting in conduction block at low values of stimulus intervals (SI), for which the simulated action potential (AP) restitution of the cell models has negative slope.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Panfilov, A.V., Zemlin, C.W.: Wave propagation in an excitable medium with a negatively sloped restitution curve. Chaos 12(3), 800–806 (2002)
Pandit, S.V., Clark, R.B., Giles, W.Y., Demir, S.S.: A mathematical model of action potential heterogeneity in adult rat ventricular myocytes. Biophysical Journal 81, 3029–3051 (2001)
Linz, K.W., Meyer, R.: Profile and kinetics of L-type calcium current during the cardiac ventricular action potential compared in guinea-pigs, rats and rabbits. Pflugers Arch. - Eur. J. Physiol. 439, 588–599 (2000)
Li, Q., Keung, E.C.: Effects of myocardial hypertrophy on transient outward current. Am. J. Physiol. 266, H1738–H1745 (1994)
Alvarez, J.L., Aimond, F., Lorente, P., Vassort, G.: Late post-myocardial infraction induces a tetrodotoxin-resistant Na + current in rat myocytes. J. Mol. Cell. Cardiol. 32(7), 1169–1179 (2000)
Zhang, H., Holden, A.V., Kodama, I., Honjo, H., Lei, M.: Mathematical models of action potentials in the periphery of and centre of the rabbit sinoatrial node. Am. J. Physiol. 279, H397–H421 (2000)
Winslow, R.L., Rice, J., Jafri, S., Marban, E., O’Rourke, B.: Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure II. Model studies. Circ. Res. 84, 571–586 (1999)
Padmala, S., Demir, S.S.: Computational Model of the Ventricular Action Potential in Adult Spontaneously Hypertensive rats. Journal of Cardiovasc. Electrophysiol. 14(9), 990 (2003)
Fernandez-Velasco, M., Goren, N., Benito, G., Blanco-Rivero, J., Bosca, L., Delgado, C.: Regional distribution of hyperpolarization-activated current (If) and hyperpolarization-activated cyclic nucleotide-gated channel mRNA expression in ventricular cells from control and hypertrophied rat hearts. J. Physiol. Lond. 553, 395–405 (2003)
Gomez, A.M., Schwaller, B., Porzig, H., Vassort, G., Niggli, E., Eger, M.: Increased exchange current but normal Ca2 + transport via INaCa exchange during cardiac hypertrophy after myocardial infraction. Circ. Res. 91, 323–330 (2002)
Yokoshiki, H., Kohya, T., Tomita, F., Tohse, N., Nakaya, N., Kanno, M., Kitabatake, A.: Restoration of action potential duration and transient outward current by regression of left ventricular hypertrophy. J. Mol. Cell. Cardiol. 29, 1331–1339 (1997)
Qin, D., Zhang, Z., Caref, E.B., Boutjdir, M., Jain, P., El-Sherif, N.: Cellular and Ionic Basis of Arrhythmias in Postinfarction Remodeled Ventricular Myocardium. Circ. Res. 79(3), 461–473 (1996)
Izumi, T., Kihara, Y., Sarai, N., Yoneda, T., Iwanaga, Y., Inagaki, K.: Reinduction of T-Type Calcium Channels by Endothelin-1 in Failing Hearts In Vivo and in Adult Rat Ventricular Cells. Circulation 108(20), 2530–2535 (2003)
Dokos, S., Celler, B., Lovell, N.: Vagal Control of Sinoatrial Rhythm: a Mathematical Model. Journal of Theoretical Biology 182(1), 21–44 (1996)
Arta, Y., Geshi, E., Nomizo, A., Aoki, S., Katagiri, T.: Alterations in sarcoplasmic reticulum and angiotensin II receptor type I gene expression in spontaneously hypertensive rat hearts. Jpn. Circ. J. 63, 367–372 (1999)
Ward, C.A., Ma, Z., Lee, S.S., Giles, W.R.: Potassium currents in atrial and ventricular myocytes from a rat model of cirrhosis. Am. J. Physiol. 273, G537–G544 (1997)
Meiry, G., Reisner, Y., Feld, Y., Goldberg, S., Rosen, M., Ziv, N., Binah, O.: Evolution of action potential propagation and repolarisation in cultured neonatal rat ventricular myocytes. J. Cardiovasc. Electrophysiol. 12(11), 1269–1277 (2001)
Nanasi, P.P., Pankucsi, C., Banyasz, T., Szigligeti, P., Papp, J.G., Varro, A.: Electrical restitution in rat ventricular muscle. Acta Physiol. Scand. 158(2), 143–153 (1996)
Shimoni, Y., Firek, L., Severson, D., Giles, W.R.: Short-term diabetes alters K + currents in rat ventricular myocytes. Circ. Res. 74, 620–628 (1994)
Cerbai, E., Barbieri, M., Li, Q., Mugeli, A.: Occurence and properties of the hyperpolarization activated current If in ventricular myocytes from normotensive and hypertensive rats during aging. Circulation 94, 1674–1681 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kharche, S., Zhang, H., Clayton, R.C., Holden, A.V. (2005). Hypertrophy in Rat Virtual Left Ventricular Cells and Tissue. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2005. Lecture Notes in Computer Science, vol 3504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494621_16
Download citation
DOI: https://doi.org/10.1007/11494621_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26161-2
Online ISBN: 978-3-540-32081-4
eBook Packages: Computer ScienceComputer Science (R0)