Abstract
Matrix-phased array transducers for real-time three-dimensional ultrasound enable fast, non-invasive visualization of cardiac ventricles. Segmentation of 3D ultrasound is typically performed at end diastole and end systole with challenges for automation of the process and propagation of segmentation in time. In this context, given the position of the endocardial surface at certain instants in the cardiac cycle, automated tracking of the surface over the remaining time frames could reduce the workload of cardiologists and optimize analysis of volume ultrasound data. In this paper, we applied optical flow to track the endocardial surface between frames of reference, segmented via manual tracing or manual editing of the output from a deformable model. To evaluate optical-flow tracking of the endocardium, quantitative comparison of ventricular geometry and dynamic cardiac function are reported on two open-chest dog data sets and a clinical data set. Results showed excellent agreement between optical flow tracking and segmented surfaces at reference frames, suggesting that optical flow can provide dynamic “interpolation” of a segmented endocardial surface.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ofili, E.O., Nanda, N.C.: Three-Dimensional and Four-Dimensional Echocardiography. Ultrasound Medical Biology 20 (1994)
Fenster, A., Downey, D.B.: Three-Dimensional Ultrasound Imaging. In: Handbook of Medical Imaging. Physics and Psychophysics, vol. 1, pp. 463–510 (2000)
Rankin, R.N., Fenster, A., et al.: Three-Dimensional Sonographic Reconstruction: Technique and Diagnostic Applications. American Journal of Radiology 161, 695–702 (1993)
Belohlavek, M., Foley, D.A., et al.: Three- and Four-Dimensional Cardiovascular Ultrasound Imaging: A New Era for Echocardiography. In: Mayo Clinic Proceedings, vol. 68, pp. 221–240 (1993)
Ramm, O.T.V., Smith, S.W.: Real Time Volumetric Ultrasound Imaging System. Journal of Digital Imaging 3, 261–266 (1990)
Herz, S., Pulerwitz, T., et al.: Novel Technique for Quantitative Wall Motion Analysis Using Real-Time Three-Dimensional Echocardiography. In: Proceedings of the 15th Annual Scientific Sessions of the American Society of Echocardiography (2004)
Philips Ultrasound - Ie33 (2004)
Tsuruoka, S., Umehara, M., et al.: Regional Wall Motion Tracking System for High-Frame Rate Ultrasound Echocardiography. In: Proceedings of the 1996 4th International Workshop on Advanced Motion Control, AMC 1996. Part 1, Tsu, Jpn (1996)
Mikic, I., Krucinski, S., et al.: Segmentation and Tracking in Echocardiographic Sequences: Active Contours Guided by Optical Flow Estimates. IEEE Trans. Med. Imaging 17, 274–284 (1998)
Boukerroui, D., Noble, J.A., et al.: Estimation in Ultrasound Images: A Block Matching Approach. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 586–598. Springer, Heidelberg (2003)
Yu, W., Lin, N., et al.: Motion Analysis of 3d Ultrasound Texture Patterns. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds.) FIMH 2003. LNCS, vol. 2674, pp. 252–261. Springer, Heidelberg (2003)
Paragios, N.: A Level Set Approach for Shape-Driven Segmentation and Tracking of the Left Ventricle. IEEE Trans. Med. Imaging 22, 773–776 (2003)
Bardinet, E., Cohen, L.D., et al.: Tracking and Motion Analysis of the Left Ventricle with Deformable Superquadratics. Med. Image Analysis 1, 129–149 (1996)
Behar, V., Adam, D., et al.: The Combined Effect of Nonlinear Filtration and Window Size on the Accuracy of Tissue Displacement Estimation Using Detected Echo Signals. Ultrasonics 41, 743–753 (2004)
Bang, J., Dahl, T., et al.: A New Method for Analysis of Motion of Carotid Plaques from Rf Ultrasound Images. Ultrasound Med. Biol. 29, 967–976 (2003)
Rabben, S.I., Bjaerum, S., et al.: Ultrasound-Based Vessel Wall Tracking: An Auto-Correlation Technique with Rf Center Frequency Estimation. Ultrasound Med. Biol. 28, 507–517 (2002)
D’Hooge, J., Claus, P., et al.: Deformation Imaging by Ultrasound for the Assessment of Regional Myocardial Function. In: 2003 IEEE Ultrasonics Symposium, Honolulu, HI, USA (2003)
Konofagou, E.E., Manning, W., et al.: Myocardial Elastography - Comparison to Results Using Mr Cardiac Tagging. In: 2003 IEEE Ultrasonics Symposium, Honolulu, HI, United States (2003)
Gutierrez, M.A., Moura, L., et al.: Computing Optical Flow in Cardiac Images for 3d Motion Analysis. In: Proceedings of the 1993 Conference on Computers in Cardiology, London, UK (1993)
Shin, I.-S., Kelly, P.A., et al.: Left Ventricular Volume Estimation from Three-Dimensional Echocardiography. In: Proceedings of SPIE, Medical Imaging 2004 - Ultrasonic Imaging and Signal Processing, San Diego, CA, United States (2004)
Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: International Joint Conference on Artificial Intelligence, IJCAI (1981)
Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. Artificial Intelligence 17 (1981)
Nagel, H.: Displacement Vectors Derived from Second-Order Intensity Variations in Image Sequences. Computer Vision Graphics Image Processing 21, 85–117 (1983)
Anandan, P.: A Computational Framework and an Algorithm for the Measurement of Visual Motion. International Journal of Computer Vision 2, 283–310 (1989)
Singh, A.: An Estimation-Theoretic Framework for Image-Flow Computation. In: International Conference on Computer Vision (1990)
Barron, J.L., Fleet, D., et al.: Performance of Optical Flow Techniques. Int. J. of Computer Vision 12, 43–77 (1994)
Duan, Q., Angelini, E.D., et al.: Assessment of Visual Quality and Spatial Accuracy of Fast Anisotropic Diffusion and Scan Conversion Algorithms for Real-Time Three-Dimensional Spherical Ultrasound. In: SPIE International Symposium Medical Imaging, San Diego, CA, USA (2004)
Ingrassia, C.M., Herz, S.L., et al.: Impact of Ischemic Region Size on Regional Wall Motion. In: Proceedings of the 2003 Annual Fall Meeting of the Biomedical Engineering Society (2003)
Angelini, E.D., Hamming, D., et al.: Comparison of Segmentation Methods for Analysis of Endocardial Wall Motion with Real-Time Three-Dimensional Ultrasound. In: Computers in Cardiology, Memphis TN, USA (2002)
Herz, S., Pulerwitz, T., et al.: Novel Technique for Quantitative Wall Motion Analysis Using Real-Time Three-Dimensional Echocardiography. In: Annual Scientific Sessions of the American Society of Echocardiography (2004)
Schiller, N.B., Acquatella, H., et al.: Left Ventricular Volume from Paired Biplane Two-Dimensional Echocardiography. Circulation 60, 547–555 (1979)
Folland, E.D., Parisi, A.F., et al.: Assessment of Left Ventricular Ejection Fraction and Volumes by Real-Time, Two-Dimensional Echocardiography. A Comparison of Cineangiographic and Radionuclide Techniques. Circulation 60, 760–766 (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Duan, Q. et al. (2005). Tracking of LV Endocardial Surface on Real-Time Three-Dimensional Ultrasound with Optical Flow. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2005. Lecture Notes in Computer Science, vol 3504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494621_43
Download citation
DOI: https://doi.org/10.1007/11494621_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26161-2
Online ISBN: 978-3-540-32081-4
eBook Packages: Computer ScienceComputer Science (R0)