Abstract
This paper describes a method for automatic contour detection in long-axis cardiac MRI using an adaptive virtual exploring robot. The robot is a simulated trained virtual autonomous tri-cycle that is initially positioned in a binary representation of the left ventricle (LV) and finds the contours during navigation through the ventricle. The method incorporates global and local prior shape knowledge of the LV in order to adapt the navigational parameters. Together with kinematic constraints, the robot is able to avoid concave regions such as papillary muscles and navigate through narrow corridors such as the apex. Validation was performed on in-vivo multiphase long-axis cardiac MRI images of 11 subjects. Results showed good correlation between the quantitative parameters, computed from manual and automatic segmentation: for end-diastolic volume (EDV) r=0.91, for end-systolic volume (ESV) r=0.93, ejection fraction (EF) r=0.77, and LV mass (LVM) r=0.80.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric snake model for segmentation in medical imagery. IEEE Trans. on Pattern Analysis and Machine Intelligence 6(2), 199–209 (1997)
Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001)
Oost, C.R., Lelieveldt, B.P.F., Uzumcu, M., Lamb, H., Reiber, J.H.C., Sonka, M.: Multi-view active appearance models: Application to x-ray lv angiography and cardiac mri. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 234–245. Springer, Heidelberg (2003)
Admiraal-Behloul, F., Lelieveldt, B.P.F., Ferrarini, L., Olosfen, H., van der Geest, R.J., Reiber, J.H.C.: A virtual exploring mobile robot for left ventricle contour tracking. In: Proc. IJCNN, vol. 1, pp. 333–338 (2004)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society (B) 39(1), 1–38 (1977)
Ye, X., Noble, J.A.: High resolution segmentation of mr images of mouse heart chambers based on a partial-pixel effect and em algorithm. In: Proc. ISBI, pp. 257–260 (2002)
Verbeek, J.J., Vlassis, N., Krose, B.: Efficient greedy learning of gaussian mixture models. Neural Computation 15(2), 469–485 (2003)
Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. On Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)
Vezhnevets, V.: Method for localization of human faces in color based face detectors and trackers. In: Proc. ICDIPCES, pp. 51–56 (2002)
Unser, M.: Splines - a perfect fit for signal/image processing. IEEE Signal Processing Magazine 16(6), 22–38 (1999)
DeSouza, G.N., Kak, A.C.: Vision for mobile robot navigation: A survey. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blok, M. et al. (2005). Long-Axis Cardiac MRI Contour Detection with Adaptive Virtual Exploring Robot. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2005. Lecture Notes in Computer Science, vol 3504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494621_6
Download citation
DOI: https://doi.org/10.1007/11494621_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26161-2
Online ISBN: 978-3-540-32081-4
eBook Packages: Computer ScienceComputer Science (R0)