Skip to main content

Direct and Recursive Prediction of Time Series Using Mutual Information Selection

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

  • 3291 Accesses

Abstract

This paper presents a comparison between direct and recursive prediction strategies. In order to perform the input selection, an approach based on mutual information is used. The mutual information is computed between all the possible input sets and the outputs. Least Squares Support Vector Machines are used as non-linear models to avoid local minima problems. Results are illustrated on the Poland electricity load benchmark and they show the superiority of the direct prediction strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Weigend, A.S., Gershenfeld, N.A.: Times Series Prediction: Forecasting the future and Understanding the Past. Addison-Wesley, Reading (1994)

    Google Scholar 

  2. Kwak, N., Chong-Ho, C.: Input feature selection for classification problems. Neural Networks, IEEE Transactions 13(1), 143–159 (2002)

    Article  Google Scholar 

  3. Zongker, D., Jain, A.: Algorithms for feature selection: An evaluation Pattern Recognition. In: Proceedings of the 13th International Conference, vol. 2, pp. 25–29, 18–22 (1996)

    Google Scholar 

  4. Ng., A.Y.: On feature selection: learning with exponentially many irrelevant features as training examples. In: Proc. 15th Intl. Conf. on Machines Learning, pp. 404–412 (1998)

    Google Scholar 

  5. Xing, E.P., Jordan, M.I., Karp, R.M.: Feature Selection for High-Dimensional Genomic Microarray Data. In: Proc. of the Eighteenth International Conference in Machine Learning, ICML 2001 (2001)

    Google Scholar 

  6. Law, M., Figueiredo, M., Jain, A.: Feature Saliency in Unsupervised Learning. Tech. Rep., Computer Science and Eng.., Michigan State Univ. (2002)

    Google Scholar 

  7. Efron, B., Tibshirani, R.J.: Improvements on cross-validation: The. 632+ bootstrap method. Amer., Statist. Assoc. 92, 548–560 (1997)

    Google Scholar 

  8. Stone, M.: An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. Royal, Statist. Soc. B39, 44–47 (1977)

    Google Scholar 

  9. Kohavi, R.: A study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: Proc. of the 14th Int. Joint Conf. on A.I., Canada, vol. 2 (1995)

    Google Scholar 

  10. Efron, B.: Estimating the error rate of a prediction rule: improvements on cross-validation. Journal of American Statistical Association 78(382), 316–331 (1993)

    Article  MathSciNet  Google Scholar 

  11. Jones, A.J.: New Tools in Non-linear Modeling and Prediction. Computational Management Science 1(2), 109–149 (2004)

    Article  MATH  Google Scholar 

  12. Yang, H.H., Amari, S.: Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information. Neural Comput. 9, 1457–1482 (1997)

    Article  Google Scholar 

  13. Kraskov, A., Stögbauer, H., Grassberger, P.: Phys. Rev. E (in press), http://arxiv.org/abs/cond-mat/0305641

  14. Harald, S., Alexander, K., Sergey, A., Peter, G.: Least Dependent Component Analysis Based on Mutual Information. Phys. Rev. E 70(066123) September 28 (2004)

    Google Scholar 

  15. http://www.fz-juelich.de/nic/Forschungsgruppen/Komplexe_Systeme/software/milca-home.html

  16. Xiaoyu, L., Bing, W.K., Simon, Y.F.: Time Series Prediction Based on Fuzzy Principles. Department of Electrical & Computer Engineering. FAMU-FSU College of Engineering, Florida State University. Tallahassee, FL 32310

    Google Scholar 

  17. Suykens, J.A.K., Van Gestel, J., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002) ISBN 981-238-151-1

    Google Scholar 

  18. Suykens, J.A.K., De brabanter, J., Lukas, L., Vandewalle, J.: Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48(1-4), 85–105 (2002)

    Article  MATH  Google Scholar 

  19. Suykens, J.A.K., Lukas, L., Vandewalle, J.: Sparse Least Squares Support Vector Machine Classifiers. In: Proc. of the European Symposium on Artificial Neural Networks ESANN 2000, Bruges, pp. 37–42 (2000)

    Google Scholar 

  20. Suykens, J.A.K., Vandewalle, J.: Training multilayer perceptron classifiers based on modified support vector method. IEEE Transactions on Neural Networks 10(4), 907–911 (1999)

    Article  Google Scholar 

  21. Cottrell, M., Girard, B., Rousset, P.: Forecasting of curves using a Kohonen classification. Joumal of Forecasting 17(5-6), 429–439 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ji, Y., Hao, J., Reyhani, N., Lendasse, A. (2005). Direct and Recursive Prediction of Time Series Using Mutual Information Selection. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_124

Download citation

  • DOI: https://doi.org/10.1007/11494669_124

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics