Abstract
Once the behaviour of particular brain circuits has been analyzed, we have added up some of these patterns to Artificial Neural Networks; thus a new hybrid learning method has emerged. In order to find the best solution to a given problem, this method combines the use of Genetic Algorithms with particular changes to connection weights based in the behaviour observed in the brain circuits analyzed. The design and implementation of this combination is shown in feed-forward multilayer artificial neural networks, specifically created to solve a simple problem. We also illustrate the benefits obtained with these new nets from a comparison with previous results achieved by the optimal Artificial Neural Networks used so far for solving the same problem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hines, M.: The NEURON simulation program. In: Skrzypek, J. (ed.) Neural Network Simulation Environments, pp. 147–163. Kluwer, Norwell (1994)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Presss, USA (1975)
LeRay, D., Fernández, D., Porto, A., Fuenzalida, M., Buño, W.: Heterosynaptic Metaplastic Regulation of Synaptic Efficacy in CA1 Pyramidal Neurons of Rat Hippocampus. Hippocampus (2004)
Porto, A.: Modelos Computacionales para optimizar el Aprendizaje y el Procesamiento de la Información en Sistemas Adaptativos: Redes Neurogliales Artificiales (RR.NG.AA.). Tesis Doctoral. Universidade da Coruña. A Coruña (2004)
Rabuñal, J.: Entrenamiento de Redes de Neuronas Artificiales con Algoritmos Genéticos. Tesis de Licenciatura. Dep. Computación. Facultad de Informática. Universidade da Coruña (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Porto, A., Pazos, A., Araque, A. (2005). Artificial Neural Networks Based on Brain Circuits Behaviour and Genetic Algorithms. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_13
Download citation
DOI: https://doi.org/10.1007/11494669_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)