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Abstract. Research efforts in metaheuristics have shown that an intel-
ligent incorporation of more classical optimization techniques in meta-
heuristics can be very beneficial. In this paper, we combine the meta-
heuristic ant colony optimization with dynamic programming for the ap-
plication to the NP-hard k-cardinality tree problem. Given an undirected
graph G with node and/or edge weights, the problem consists of finding
a tree in G with exactly k edges such that the sum of the weights is min-
imal. In a standard ant colony optimization algorithm, ants construct
trees with exactly k edges. In our algorithm, ants may construct trees
that have more than k edges, in which case we use a recent dynamic pro-
gramming algorithm to find—in polynomial time—the best k-cardinality
tree embedded in the bigger tree constructed by the ants. We show that
our hybrid algorithm improves over the standard ant colony optimiza-
tion algorithm and, for node-weighted grid graph instances, is a current
state-of-the-art method.

1 Introduction

The k-cardinality tree (KCT) problem—also referred to as the k-minimum span-

ning tree (k-MST) problem, or just the k-tree problem—is an NP-hard [13]
combinatorial optimization problem which generalizes the well-known minimum
weight spanning tree problem. In this paper we deal with a generalized problem
version in which the given graph G can have both node and edge weights. More
formally, let G = (V, E) be a graph with a weight function w

E
: E → IN on the

edges and a weight function w
V

: V → IN on the nodes. We denote by Tk the
set of all k-cardinality trees (i.e., trees with exactly k edges) in G. Then, the
problem consists of finding a k-cardinality tree Tk ∈ Tk that minimizes

f(Tk) =

(

∑

e∈E(Tk)

w
E
(e)

)

+

(

∑

v∈V (Tk)

w
V
(v)

)

, (1)

?
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where E(T ) and V (T ) denote the edges of the tree T and its nodes, respectively.
The edge-weighted version of the KCT problem was first tackled by exact

approaches [14, 8, 17] and heuristics [12, 11, 8]. Soon, the research focused on
the development of more appealing metaheuristics: two evolutionary computa-
tion approaches [1, 4], three tabu search methods [2, 15, 4], different variations of
variable neighborhood search (VNS) [18] and two ant colony optimization (ACO)
approaches [7, 4]. Two sets of benchmark instances exist: one was introduced for
the empirical evaluation of the VNS-based approaches in [18], and the other one
for the metaheuristics proposed in [4]. The variable neighborhood decomposition
search (VNDS) algorithm proposed in [18] is the state-of-the-art method for the
first set, and the ACO algorithm proposed in [7] is so for the second set.

Less results are known for the node-weighted KCT problem. Greedy-based
heuristics were proposed in [12], and the first metaheuristic approaches were
presented in [5]. The only existing benchmark set for the node-weighted KCT,
together with the currently best metaheuristic (a VNDS), are introduced in [6].

Our contribution. A polynomial-time dynamic programming (DP) algorithm for
finding optimal k-cardinality trees in bigger edge-weighted trees was proposed
in [16]. This algorithm was used in well-working heuristics for the edge-weighted
KCT problem [12]. Recently, we extended this algorithm to be applied to the
general (edge and/or node-weighted) KCT problem [3]. We show how a standard
ACO algorithm (see [4]) can be improved by applying the DP algorithm in [3] in
the following way: Instead of producing k-cardinality trees, the ants produce trees
with more than k edges. To these trees we then apply the dynamic programming
algorithm in order to obtain the best k-cardinality trees embedded in them. Our
experimental results show that our algorithm improves over the standard ACO
algorithm for the KCT problem. Moreover, our algorithm is able to improve
current state-of-the-art results for node-weighted grid graph instances.

The remainder of the paper is organized as follows. In Section, 2 we describe
our hybrid algorithm. In Section 3, we present the experimental evaluation,
before we conclude this work in Section 4.

2 The ACO-DP algorithm

ACO [9, 10] emerged in the early 90’s as a novel nature-inspired metaheuristic
for the solution of combinatorial optimization problems. The inspiring source
of ACO is the foraging behaviour of real ants. When searching for food, ants
initially explore the area surrounding their nest in a random manner. As soon as
an ant finds a food source, it carries some of the food found to the nest. During
the return trip, the ant deposits a chemical pheromone trail on the ground. The
quantity of pheromone deposited, which may depend on the quantity and quality
of the food, will guide other ants to the food source. The indirect communica-
tion established via the pheromone trails allows the ants to find shortest paths
between their nest and food sources. This behaviour of real ants in nature is ex-
ploited in ACO in order to solve discrete optimization problems using artificial
ant colonies.



Algorithm 1 ACO-DP for the KCT problem

input: a node and/or edge-weighted graph G, a cardinality k < |V | − 1, and
a tree size l with k ≤ l ≤ |V | − 1
T bs

k ← null, T rb
k ← null

cf ← 0, bs update ← false

forall e ∈ E do τe ← 0.5 end forall

while termination conditions not satisfied do

for j = 1 to na do

Tl
j ← ConstructTree(T ,l)

if (l > k) then Tk
j ← DynamicTree(Tl

j) end if

end for

T ib
k ← argmin{f(Tk

1), . . . , f(Tk
na)}

Update(T ib
k ,T rb

k ,T bs
k )

ApplyPheromoneValueUpdate(cf ,bs update ,T ,T ib
k ,T rb

k ,T bs
k )

cf ← ComputeConvergenceFactor(T , T rb
k )

if cf ≥ 0.99 then

if bs update = true then

forall e ∈ E do τe ← 0.5 end forall

T rb
k ← null

bs update ← false

else

bs update ← true

end if

end if

end while

output: T bs
k

We combine a standard ACO algorithm [4] with the dynamic programming
algorithm in [3], and denote the resulting algorithm as ACO-DP. Algorithm 1
captures the framework of this new hybrid approach. In the pheromone model
used, the set of pheromone trail parameters T contains a parameter Te (with
pheromone value τe) for each e ∈ E. After the initialization of the variables
T bs

k (i.e., the best-so-far solution), T rb
k (i.e., the restart-best solution), and cf

(i.e., the convergence factor), all the pheromone values are set to 0.5. At every
iteration, each of the na ants construct probabilistically an l-cardinality tree. If
l > k, the dynamic programming algorithm from [3] is applied to extract the best
k-cardinality tree embedded in the l-cardinality tree. Finally, before the next it-
eration starts, some of the solutions are used for updating the pheromone values.
The details of the methods in this framework are explained in the following.

– ConstructTree(T ,l): Henceforth, we denote the two nodes that are con-
nected by an edge e with ve,1 and ve,2. To build an l-cardinality tree, an ant
starts from an edge e that is chosen probabilistically in proportion to the values
τe/(w

E
(e) + w

V
(ve,1) + w

V
(ve,2)). At each construction step an ant extends its

current tree by adding a node and an edge such that the result is again a tree.



Let, at an arbitrary construction step, N be the set of nodes that fulfill the
above condition. For each v ∈ N let Nv be the set of edges that have v as an
end-point, ant that have their other end-point—denoted by ve,o—in the current
tree. If an ant chooses v ∈ N to be added to the current tree, edge emin ∈ Nv

that minimizes w
E
(e) + w

V
(ve,o) is also added to the current tree. It remains

to be specified how an ant chooses a node v ∈ N : In det % of the cases, an ant
chooses the node v that minimizes w

E
(emin)+w

V
(v). In 100−det % of the cases,

v is chosen probabilistically in proportion to w
E
(emin) + w

V
(v).

– DynamicTree(Tl
j): This procedure applies the dynamic programming al-

gorithm for node and/or edge-weighted trees in [3] to an l-cardinality tree Tl
j

(where j denotes the tree constructed by the jth ant). The algorithm returns
the best k-cardinality tree Tk

j embedded in Tl
j .

– Update(T ib
k ,T rb

k ,T bs
k ): In this procedure T rb

k and T bs
k are set to T ib

k (i.e., the
iteration-best solution), if f(T ib

k ) < f(T rb
k ) and f(T ib

k ) < f(T bs
k ), respectively.

– ApplyPheromoneUpdate(cf ,bs update,T ,T ib
k ,T rb

k ,T bs
k ): In the same way as

described in [4], our ACO-DP algorithm may use three different solutions for up-
dating the pheromone values: (i) the iteration-best solution T ib

k , (ii) the restart-
best solution T rb

k and, (iii) the best-so-far solution T bs
k . Their influence depends

on the convergence factor cf , which provides an estimate about the state of
convergence of the system. To perform the update, first an update value ξe for
every pheromone trail parameter Te ∈ T is computed:

ξe ← κib · δ(T
ib
k , e) + κrb · δ(T

rb
k , e) + κbs · δ(T

bs
k , e) ,

where κib is the weight of T ib
k , κrb the weight of T rb

k , and κbs the weight of T bs
k

such that κib + κrb + κbs = 1.0. The δ-function is the characteristic function of
the set of edges in the tree, i.e., for each k-cardinality tree Tk,

δ(Tk, e) =

{

1 : e ∈ E(Tk)
0 : otherwise

Then, the following update rule is applied to all pheromone values τe :

τe ← min {max{τmin, τe + ρ · (ξe − τe)}, τmax} ,

where ρ ∈ (0, 1] is the evaporation (or learning) rate. The upper and lower
bounds τmax = 0.99 and τmin = 0.01 keep the pheromone values always in the
range (τmin, τmax), thus preventing the algorithm from converging to a solution.
After tuning, the values for ρ, κib, κrb and κbs are chosen as shown in Table 1.

– ComputeConvergenceFactor(T , T rb
k ): This function computes, at each itera-

tion, the convergence factor as

cf ←

∑

e∈E(T rb

k
) τe

k · τmax
,

where τmax is again the upper limit for the pheromone values. The convergence
factor cf can therefore only assume values between 0 and 1. The closer cf is to
1, the higher is the probability to produce the solution T rb

k .



Table 1. The schedule used for values ρ, κib, κrb and κbs depending on cf (the
convergence factor) and the Boolean control variable bs update.

bs update = false bs update = true

cf < 0.7 cf ∈ [0.7, 0.9) cf ≥ 0.9
ρ 0.05 0.1 0.15 0.15

κib 2/3 1/3 0 0
κrb 1/3 2/3 1 0
κbs 0 0 0 1

(a) Tuning results for 20x20 random node-weighted grid graphs. From left
to right, the results for cardinalities 40, 80, 120, 160, and 200 are shown.

(b) Tuning results for edge-weighted graphs with 500 nodes. From left to
right, the results for cardinalities 50, 100, 150, 200, and 250 are shown.

Fig. 1. Tuning results. In each of the five matrices in (a) and (b), the columns
correspond to the 6 values of det, and the rows to the 5 values of l (e.g., the matrix
position (2, 2) corresponds to the gray value of the tuple (det = 80, l = k + s)).

3 Experimental results

We implemented ACO-DP in C++, and run experiments on a PC with a 3 GHz
Intel Pentium IV processor and 1 Gb memory. In the previous section we specified
the values of all parameters of ACO-DP except for two crucial ones: det, the per-
centage of deterministic steps during the tree construction, and l, the size of the
trees constructed by the ants. For their determination, we conducted a parameter
tuning by running ACO-DP for all combinations of det ∈ {75, 80, 85, 90, 95, 99}
and l ∈ {k, k + s, k + 2s, k + 3s, k + 4s}, where s = (|V | − 1− k)/4.

To obtain instances for tuning, we randomly generated 10 20x20-grid node-
weighted graph instances, and applied ACO-DP exactly once for each (det, l)
combination and for each cardinality k ∈ {40, 80, 120, 160, 200}. This gives a
value averaged over the 10 graphs for each (det, l, k) triple. For each k, we then
ranked the resulting 30 values and translated them into gray scale: the best of the
30 values received gray value 1.0 (i.e., black), and the worst received gray value



Table 2. Results for node-weighted grid graphs in [6]. As time limits for ACO-DP
we used one seventh of the time limits of VNDS as given in [6].

n k VNDS DynamicTree (Prim) ACO-DP
qvnds qdtp qaco dvnds/% ddtp/%

30x30 100 8571.9 8612.2 8203.7 -4.2954 -4.7432
200 17994.4 18491.6 17850.1 -0.8019 -3.4691
300 28770.9 29488.6 28883.9 0.3927 -2.0506
400 42114 42618.6 42331.9 0.5174 -0.6727
500 59266.4 59662 59541.7 0.4645 -0.2016

40x40 150 18029.9 18495.3 17527.1 -2.7887 -5.2348
300 38965.9 39220.4 37623.8 -3.4442 -4.0708
450 61290.1 62118.3 60417 -1.4245 -2.7388
600 86422.3 87935.4 86594.7 0.1994 -1.5246
750 117654 119303 118570 0.7785 -0.6140

50x50 250 37004 38007.1 35995.2 -2.7261 -5.2934
500 81065.8 80247.9 77309.9 -4.6331 -3.6611
750 128200 128224 125415 -2.1723 -2.1908

1000 182220 184103 181983 -0.1300 -1.1516
1250 250962 253116 253059 0.8355 -0.0224

d/% -1.2818 -2.5093

0.0 (i.e., white). These results, expressed in gray values, are shown in Figure 1(a).
We did the same for the 10 edge-weighted graphs with 500 nodes from the
benchmark set proposed in [18] (for cardinalities k ∈ {50, 100, 150, 200, 250}).
The results are shown in Figure 1(b).

Both for node-weighted grid graphs and for edge-weighted graphs, the tuning
results show that a setting l > k is always better, which means that ACO-DP
always improves on the standard ACO algorithm. With respect to the tuning
results, we chose the setting (det = 85, l=k+2s) for the application of ACO-
DP to node-weighted grid graphs, and the setting (det = 95, l = k + 2s) for
the application to edge-weighted graphs. With these settings, we applied our
algorithm to some of the existing benchmarks.1

Results for the node-weighted benchmark. We applied ACO-DP to all node-
weighted grid graph instances from [6], i.e., 10 30x30 instances, another 10 of
40x40, and another 10 with 50x50 nodes. The results are shown in Table 2.
The first table column indicates the graph type, and the second one indicates
the tested cardinality. We compared our results to the state-of-the-art algorithm
VNDS in [6] and to the heuristic DynamicTree (Prim) in [3]; the latter constructs
a spanning tree of the given graph, and applies the dynamic programming al-
gorithm to it. For these approaches, together with our ACO-DP approach, the
table shows the average value obtained for each (n, k) combination (note that
each algorithm was applied exactly once to each of the 10 instances of a graph
type). The best value for each (n, k) combination is given in bold font. For ACO-

1 Concerning the computational overhead, note that with l = k + 2s the time needed
for constructing a solution for our smallest cardinality takes about 6 times longer
than with l = k. While for our biggest cardinality the time needed for constructing
a solution is only about 0.3 times longer than with l = k.



Table 3. Results for edge-weighted graphs in [18]. As time limits for ACO-DP
we used one tenth of the time limits of VNDS as given in [18].

n k VNDS DynamicTree (Prim) ACO-DP
qvnds qdtp qaco dvnds/% ddtp/%

1000 100 5828 5841.9 5827.2 -0.0137 -0.2516
200 11893.7 11927.5 11910.1 0.1378 -0.1458
300 18196.6 18225.6 18217.4 0.1143 -0.0449
400 24734 24766.4 24757.8 0.0962 -0.0347
500 31561.8 31593.3 31613.8 0.1647 0.0648

2000 200 23538.3 23543.6 23479 -0.2519 -0.2743
400 48027.3 48086.2 48030.4 0.0064 -0.1160
600 73277.8 73394.2 73392.9 0.1570 -0.0017
800 99491.2 99623.2 99801.4 0.3117 0.1788

1000 126485 126916 127325 0.6639 0.3222
3000 300 35186.1 35203.5 35160.3 -0.0733 -0.1227

600 71634.7 71729.2 71862.8 0.3184 0.1862
900 109463 109631 110094 0.5764 0.4223

1200 148826 148997 149839 0.6803 0.5649
1500 189943 190080 191627 0.8867 0.8141

d/% 0.2516 0.1041

DP we additionally provide the relative deviations (in %) from VNDS (headed
by dvnds/%), and from DynamicTree (Prim) (headed by ddtp/%). The last table
row provides the averages over these relative deviations. The machine used for
running VNDS is about 7 times slower than our machine. Therefore, we used as
time limits for ACO-DP one seventh of the time limits of VNDS in [6].

The results show that ACO-DP is on average 1.28 % better than VNDS, and
2.51 % better than DynamicTree (Prim). They also show that ACO-DP seems in
general to have advantages for smaller cardinalities, and that ACO-DP seems to
become better—in comparison to VNDS—with growing problem instance size.

Results for the edge-weighted benchmark. We also applied ACO-DP to some of
the edge-weighted graph instances from [18], i.e., 10 instances with 1000, 2000
and 3000 nodes, respectively. The results are shown in Table 3 in the same way
as outlined for Table 2. Note that also a VNDS (a different one) is the current
state-of-the-art algorithm for these instances. The machine that was used to run
VNDS is about 10 times slower than our machine. Therefore, we used as time
limits for ACO-DP one tenth of the time limits of VNDS in [18].

The results show that in contrast to the node-weighted grid graph case, ACO-
DP seems not to reach the state-of-the-art results; ACO-DP can improve them
only for small cardinalities. This might be due to the much higher density of the
edge-weighted graph instances (w.r.t. the node-weighted grid graph instances).
Note that the difference in quality is minimal; on average ACO-DP is only 0.25 %
worse than VNDS, and 0.1 % worse than DynamicTree (Prim).

4 Conclusions

A successful combination of ACO and dynamic programming has been proposed
for solving a general (edge and/or node-weighted) version of the NP-hard k-



cardinality tree problem. The results obtained indicate that the hybrid algorithm
outperforms the standard ACO algorithm. Furthermore, for node-weighted grid
graphs, the hybrid algorithm outperforms the current state-of-the-art VNDS
method. Further experiments have shown that the results obtained depend on
topological properties of the graphs (e.g., density, d-regularity, etc.) rather than
the tackled problem version (i.e., edge or node weighted).

References

1. M. Blesa, P. Moscato, and F. Xhafa. A memetic algorithm for the minimum
weighted k-cardinality tree subgraph problem. In Proc. of the 4th Metah. In-

tern. Conf., volume 1, pages 85–90, 2001.
2. M. Blesa and F. Xhafa. A C++ implementation of tabu search for k-cardinality tree

problem based on generic programming and component reuse. In Net.ObjectDays

2000 Tagungsband, pages 648–652, Erfurt, Germany, 2000.
3. C. Blum. Revisiting dynamic programming for finding optimal subtrees in trees.

Tech. Rep. LSI-04-57, Universitat Politècnica Catalunya, Spain, 2004. Submitted.
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