Abstract
This paper presents a strategy for the implementation of large scale spiking neural network topologies on FPGA devices based on the I&F conductance model. Analysis of the logic requirements demonstrate that large scale implementations are not viable if a fully parallel implementation strategy is utilised. Thus the paper presents an alternative approach where a trade off in terms of speed/area is made and time multiplexing of the neuron model implemented on the FPGA is used to generate large network topologies. FPGA implementation results demonstrate a performance increase over a PC based simulation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Roth, U., Jahnke, A., Klar, H.: Hardware Requirements for Spike-Processing Neural Networks. In: Mira, J., Sandoval, F. (eds.) From Natural to Artificial Neural Computation (IWANN), pp. 720–727. Springer, Berlin (1995)
Maass, W., Bishop, C.M. (eds.): Pulsed Neural Networks. MIT Press, Cambridge
Upegui, A., Peña-Reyes, C.A., Sanchez, E.: A methodology for evolving spiking neural-network topologies on line using partial dynamic reconfiguration. In: ICCI - International Conference on Computational Inteligence, Medellin, Colombia (November 2003)
Perez-Uribe, A.: Structure-adaptable digital neural networks. PhD thesis, EPFL (1999)
Ros, E., Agis, R., Carrillo, R.R., Ortigosa, E.M.: Post-synaptic Time-Dependent Conductances in Spiking Neurons: FPGA Implementation of a Flexible Cell Model. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 145–152. Springer, Heidelberg (2003)
Haykin: Neural Networks, A Comprehensive Foundation, 2nd edn. Prentice-Hall Inc., New Jersey (1999)
Roggen, D., Hofmann, S., Thoma, Y., Floreano, D.: Hardware spiking neural network with run-time reconfigurable connectivity in an autonomous robot. In: NASA/DoD Conference on Evolvable Hardware (July 2003)
Delorme, A., Gautrais, J., VanRullen, R., Thorpe, S.J.: SpikeNET: A simulator for modeling large networks of integrate and fire neurons. Neurocomputing 26- 27, 989–996 (1999)
Blake, J.J., McGinnity, T.M., Maguire, L.P.: The Implementation Of Fuzzy Systems. Neural Networks and Fuzzy Neural Networks Using FPGAs, Information Sciences 112(1-4), 151–168 (1998)
Glackin, B., Maguire, L.P., McGinnity, T.M.: Intrinsic and extrinsic implementation of a bio-inspired hardware system. Information Sciences 161(1-2), 1–19 (2004)
Hodgkin, A.L., Huxley, A.F.: A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve. Journal of Physiology 117, 500–544 (1952)
Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)
Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, Oxford (1999)
Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Methematical Modeling of Neural Systems. MIT Press, Cambridge (2001)
Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning though spike-timing dependent synaptic plasticity. Nature Neuroscince 3, 919–926 (2000)
Song, S., Abbott, L.F.: Column and Map Development and Cortical Re-Mapping Through Spike-Timing Dependent Plasticity. Neuron 32, 339–350 (2001)
Deneve, S., Latham, P.E., Pouget, A.: Efficient computation and cue integration with noisy population codes. Nature Neuroscience 4, 826–831 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Glackin, B., McGinnity, T.M., Maguire, L.P., Wu, Q.X., Belatreche, A. (2005). A Novel Approach for the Implementation of Large Scale Spiking Neural Networks on FPGA Hardware. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_68
Download citation
DOI: https://doi.org/10.1007/11494669_68
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)