Abstract
Among visual processings in the visual networks, movement detections are carried out in the visual cortex. The visual cortex for the movement detection, consist of two layered networks, called the primary visual cortex (V1), followed by the middle temporal area (MT). In the biological visual neural networks, a characteristic feature is nonlinear functions, which will play important roles in the visual systems. In this paper, V1 and MT model networks, are decomposed into sub-asymmetrical networks. By the optimization of the asymmetric networks, movement detection equations are derived. Then, it was clarified that asymmetric networks with the even-odd nonlinearity combined , are fundamental in the movement detection. These facts are applied to two layered V1 and MT networks, in which it was clarified that the second layer MT has an efficient ability to detect the movement.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hassenstein, B., Reichard, W.: Systemtheoretische analyse der zeit-, reihenfolgen- and vorzeichenauswertung bei der bewegungsperzeption des russelkafers. Chlorophanus. Z. Naturf 11b, 513–524 (1956)
Barlow, H.B., Levick, R.W.: The mechanism of directional selectivity in the rabbit’s retina. J. Physiol. 173, 377–407 (1965)
Victor, J.D., Shapley, K.M.: The nonlinear pathway of Y ganglion cells in the cat retina. J. Gen. Physiol. 74, 671–689 (1979)
Ishii, N., Naka, K.-I.: Movement and Memory Function in Biological Neural Networks. Int. J. of Artificial Intelligence Tools 4(4), 489–500 (1995)
Ishii, N., Sugiura, S., Nakamura, M., Yamauchi: Sensory Perception, Learning and Integration in Neural Networks. In: Proc. IEEE Int. Conf. on Information Intelligence & Systems, pp. 72–79 (1999)
Ishii, N., Naka, K.-I.: Function of Biological Asymmetrical Neural Networks. In: Cabestany, J., Mira, J., Moreno-DÃaz, R. (eds.) IWANN 1997. LNCS, vol. 1240, pp. 1115–1125. Springer, Heidelberg (1997)
Korenberg, M.J., Sakai, H.M., Naka, K.-I.: Dissection of the neuron network in the catfish inner retina. J. Neurophysiol. 61, 1110–1120 (1989)
Marmarelis, P.Z., Marmarelis, V.Z.: Analysis of Physiological System: The White Noise Approach. Plenum Press, New York (1978)
Naka, K.-I., Sakai, H.M., Ishii, N.: Generation of transformation of second order nonlinearity in catfish retina. Annals of Biomedical Engineering 16, 53–64 (1988)
Shapley, R.: Visual cortex: pushing the envelope. Nature: neuroscience 1, 95–96 (1998)
Reichardt, W.: Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. Rosenblith Edition., Wiley, Chichester (1961)
Sakuranaga, M., Naka, K.-I.: Signal transmission in the catfish retina. III. Transmission to type-C cell. J. Neurophysiol. 58, 411–428 (1987)
Taub, E., Victor, J.D., Conte, M.M.: Nonlinear preprocessing in short-range motion. Vision Research 37, 1459–1477 (1997)
Heeger, D.J.: Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. J. Neurophysiol. 70, 1885–1898 (1993)
Heeger, D.J., Simoncelli, E.P., Movshon, J.A.: Computational models of cortical visual processing. Proc. Natl. Acad. Sci, USA 93, 623–627 (1996)
Simoncelli, E.P., Heeger, D.J.: A Model of Neuronal Responses in Visual Area MT. Vision Research 38, 743–761 (1998)
Lu, Z.L., Sperling, G.: Three-systems theory of human visual motion perception: review and update. J. Opt. Soc. Am. A 18, 2331–2370 (2001)
Ishii, N., Deguchi, T., Sasaki, H.: Parallel processing for movement detection in neural networks with nonlinear functions. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 626–633. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ishii, N., Deguchi, T., Sasaki, H. (2005). Layered Network Computations by Parallel Nonlinear Processing. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_75
Download citation
DOI: https://doi.org/10.1007/11494669_75
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)