Skip to main content

Layered Network Computations by Parallel Nonlinear Processing

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

  • 2563 Accesses

Abstract

Among visual processings in the visual networks, movement detections are carried out in the visual cortex. The visual cortex for the movement detection, consist of two layered networks, called the primary visual cortex (V1), followed by the middle temporal area (MT). In the biological visual neural networks, a characteristic feature is nonlinear functions, which will play important roles in the visual systems. In this paper, V1 and MT model networks, are decomposed into sub-asymmetrical networks. By the optimization of the asymmetric networks, movement detection equations are derived. Then, it was clarified that asymmetric networks with the even-odd nonlinearity combined , are fundamental in the movement detection. These facts are applied to two layered V1 and MT networks, in which it was clarified that the second layer MT has an efficient ability to detect the movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hassenstein, B., Reichard, W.: Systemtheoretische analyse der zeit-, reihenfolgen- and vorzeichenauswertung bei der bewegungsperzeption des russelkafers. Chlorophanus. Z. Naturf 11b, 513–524 (1956)

    Google Scholar 

  2. Barlow, H.B., Levick, R.W.: The mechanism of directional selectivity in the rabbit’s retina. J. Physiol. 173, 377–407 (1965)

    Google Scholar 

  3. Victor, J.D., Shapley, K.M.: The nonlinear pathway of Y ganglion cells in the cat retina. J. Gen. Physiol. 74, 671–689 (1979)

    Article  Google Scholar 

  4. Ishii, N., Naka, K.-I.: Movement and Memory Function in Biological Neural Networks. Int. J. of Artificial Intelligence Tools 4(4), 489–500 (1995)

    Article  Google Scholar 

  5. Ishii, N., Sugiura, S., Nakamura, M., Yamauchi: Sensory Perception, Learning and Integration in Neural Networks. In: Proc. IEEE Int. Conf. on Information Intelligence & Systems, pp. 72–79 (1999)

    Google Scholar 

  6. Ishii, N., Naka, K.-I.: Function of Biological Asymmetrical Neural Networks. In: Cabestany, J., Mira, J., Moreno-Díaz, R. (eds.) IWANN 1997. LNCS, vol. 1240, pp. 1115–1125. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Korenberg, M.J., Sakai, H.M., Naka, K.-I.: Dissection of the neuron network in the catfish inner retina. J. Neurophysiol. 61, 1110–1120 (1989)

    Google Scholar 

  8. Marmarelis, P.Z., Marmarelis, V.Z.: Analysis of Physiological System: The White Noise Approach. Plenum Press, New York (1978)

    Google Scholar 

  9. Naka, K.-I., Sakai, H.M., Ishii, N.: Generation of transformation of second order nonlinearity in catfish retina. Annals of Biomedical Engineering 16, 53–64 (1988)

    Article  Google Scholar 

  10. Shapley, R.: Visual cortex: pushing the envelope. Nature: neuroscience 1, 95–96 (1998)

    Article  Google Scholar 

  11. Reichardt, W.: Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. Rosenblith Edition., Wiley, Chichester (1961)

    Google Scholar 

  12. Sakuranaga, M., Naka, K.-I.: Signal transmission in the catfish retina. III. Transmission to type-C cell. J. Neurophysiol. 58, 411–428 (1987)

    Google Scholar 

  13. Taub, E., Victor, J.D., Conte, M.M.: Nonlinear preprocessing in short-range motion. Vision Research 37, 1459–1477 (1997)

    Article  Google Scholar 

  14. Heeger, D.J.: Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. J. Neurophysiol. 70, 1885–1898 (1993)

    Google Scholar 

  15. Heeger, D.J., Simoncelli, E.P., Movshon, J.A.: Computational models of cortical visual processing. Proc. Natl. Acad. Sci, USA 93, 623–627 (1996)

    Article  Google Scholar 

  16. Simoncelli, E.P., Heeger, D.J.: A Model of Neuronal Responses in Visual Area MT. Vision Research 38, 743–761 (1998)

    Article  Google Scholar 

  17. Lu, Z.L., Sperling, G.: Three-systems theory of human visual motion perception: review and update. J. Opt. Soc. Am. A 18, 2331–2370 (2001)

    Article  Google Scholar 

  18. Ishii, N., Deguchi, T., Sasaki, H.: Parallel processing for movement detection in neural networks with nonlinear functions. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 626–633. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishii, N., Deguchi, T., Sasaki, H. (2005). Layered Network Computations by Parallel Nonlinear Processing. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_75

Download citation

  • DOI: https://doi.org/10.1007/11494669_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics