Abstract
The implementation in a robot of the coordination between different sensors and actuators in order to achieve a task requires a high formulation and modelisation effort, specially when the number of sensors/actuators and degrees of freedom available in the robot is huge. This paper introduces a highly distributed architecture that is independent from the robot platform, capable of the generation of such a coordination in an automatic way by using evolutionary methods. The architecture is completely neural network based and it allows the control of the whole robot for, in principle, any type of task based on sensory-motor coordination. The article shows how the proposed architecture is capable of controlling an Aibo robot for the performance of three different difficult tasks (standing, standing up and walking) using exactly the same neural distribution. It is also expected that it will be directly scalable for higher levels of control and general design in evolutionary robotics.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. The MIT Press, Cambridge (2000)
Floreano, D., Mondada, F.: Evolutionary neurocontrollers for autonomous mobile robots. Neural Networks 11, 1461–1478 (1998)
Hiroshi Kimura, S.A., Sakurama, K.: Realization of dinamic walking and running of the quadruped using neural oscillator. Autonomous Robots 7, 247–258 (1999)
Hiroshi Kimura, Y.F., Konaga, K.: Adaptive dynamic walking of a quadruped robot by using neural system model. Advanced Robot 15, 859–876 (2001)
Collins, J., Richmond, S.: Hard-wired central pattern generators for quadrupedal locomotion. Biological Cybernetics 71, 375–385 (1994)
Reeve, R.: Generating walking behaviours in legged robots. PhD thesis, University of Edinburgh (1999)
Billard, A., Ijspeert, A.J.: Biologically inspired neural controllers for a motor control in a quadruped robot. In: Proceedings of the International Joint Conference on Neural Network (2000)
Minsky, M.: The Society of Mind. Touchtone Books (1988)
Fodor, J.: The modularity of mind. MIT Press, Cambridge (1983)
Gómez, F., Miikkulainen, R.: Solving non-markovian control tasks with neuroevolution. In: Proceedings of the IJCAI 1999 (1999)
Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior. Technical Report AI96-248, University of Texas (1996)
Yong, H., Miikkulainen, R.: Cooperative coevolution of multiagent systems. Technical Report AI01-287, Department of computer sciences, University of Texas (2001)
Téllez, R., Angulo, C.: Evolving cooperation of simple agents for the control of an autonomous robot. In: Proceedings of the 5th IFAC Symposium on Intelligent Autonomous Vehicles (2004)
Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems 1, 39–42 (2004)
Hornby, G.S., Fujita, M., Takamura, S., Yamamoto, T., Hanagata, O.: Autonomous evolution of gaits with the sony quadruped robot. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, vol. 2, pp. 1297–1304. Morgan Kaufmann, San Francisco (1999)
Hornby, G., Takamura, S., Hanagata, O., Fujita, M., Pollack, J.B.: Evolution of controllers from a high-level simulator to a high DOF robot. In: ICES, pp. 80–89 (2000)
Röfer, T.: Evolutionary gait-optimization using a fitness function based on proprioception. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 310–322. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Téllez, R.A., Angulo, C., Pardo, D.E. (2005). Highly Modular Architecture for the General Control of Autonomous Robots. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_87
Download citation
DOI: https://doi.org/10.1007/11494669_87
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)