Skip to main content

Highly Modular Architecture for the General Control of Autonomous Robots

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

Abstract

The implementation in a robot of the coordination between different sensors and actuators in order to achieve a task requires a high formulation and modelisation effort, specially when the number of sensors/actuators and degrees of freedom available in the robot is huge. This paper introduces a highly distributed architecture that is independent from the robot platform, capable of the generation of such a coordination in an automatic way by using evolutionary methods. The architecture is completely neural network based and it allows the control of the whole robot for, in principle, any type of task based on sensory-motor coordination. The article shows how the proposed architecture is capable of controlling an Aibo robot for the performance of three different difficult tasks (standing, standing up and walking) using exactly the same neural distribution. It is also expected that it will be directly scalable for higher levels of control and general design in evolutionary robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. The MIT Press, Cambridge (2000)

    Google Scholar 

  2. Floreano, D., Mondada, F.: Evolutionary neurocontrollers for autonomous mobile robots. Neural Networks 11, 1461–1478 (1998)

    Article  Google Scholar 

  3. Hiroshi Kimura, S.A., Sakurama, K.: Realization of dinamic walking and running of the quadruped using neural oscillator. Autonomous Robots 7, 247–258 (1999)

    Article  Google Scholar 

  4. Hiroshi Kimura, Y.F., Konaga, K.: Adaptive dynamic walking of a quadruped robot by using neural system model. Advanced Robot 15, 859–876 (2001)

    Article  Google Scholar 

  5. Collins, J., Richmond, S.: Hard-wired central pattern generators for quadrupedal locomotion. Biological Cybernetics 71, 375–385 (1994)

    Article  MATH  Google Scholar 

  6. Reeve, R.: Generating walking behaviours in legged robots. PhD thesis, University of Edinburgh (1999)

    Google Scholar 

  7. Billard, A., Ijspeert, A.J.: Biologically inspired neural controllers for a motor control in a quadruped robot. In: Proceedings of the International Joint Conference on Neural Network (2000)

    Google Scholar 

  8. Minsky, M.: The Society of Mind. Touchtone Books (1988)

    Google Scholar 

  9. Fodor, J.: The modularity of mind. MIT Press, Cambridge (1983)

    Google Scholar 

  10. Gómez, F., Miikkulainen, R.: Solving non-markovian control tasks with neuroevolution. In: Proceedings of the IJCAI 1999 (1999)

    Google Scholar 

  11. Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior. Technical Report AI96-248, University of Texas (1996)

    Google Scholar 

  12. Yong, H., Miikkulainen, R.: Cooperative coevolution of multiagent systems. Technical Report AI01-287, Department of computer sciences, University of Texas (2001)

    Google Scholar 

  13. Téllez, R., Angulo, C.: Evolving cooperation of simple agents for the control of an autonomous robot. In: Proceedings of the 5th IFAC Symposium on Intelligent Autonomous Vehicles (2004)

    Google Scholar 

  14. Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems 1, 39–42 (2004)

    Google Scholar 

  15. Hornby, G.S., Fujita, M., Takamura, S., Yamamoto, T., Hanagata, O.: Autonomous evolution of gaits with the sony quadruped robot. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, vol. 2, pp. 1297–1304. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  16. Hornby, G., Takamura, S., Hanagata, O., Fujita, M., Pollack, J.B.: Evolution of controllers from a high-level simulator to a high DOF robot. In: ICES, pp. 80–89 (2000)

    Google Scholar 

  17. Röfer, T.: Evolutionary gait-optimization using a fitness function based on proprioception. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 310–322. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Téllez, R.A., Angulo, C., Pardo, D.E. (2005). Highly Modular Architecture for the General Control of Autonomous Robots. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_87

Download citation

  • DOI: https://doi.org/10.1007/11494669_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics