Abstract
Combining previous experience and knowledge to contemplate tasks of increasing complexity is one of the most interesting problems in autonomous robotics. Here we present an ANN based modular architecture that uses the concept of modulation to increase the possibilities of reusing previously obtained modules. A first approximation to the modulation of the actuators was tested in a previous paper where we showed how it was useful to obtain more complex behaviours that those obtained using only activation / inhibition. In this paper we extend the concept to sensor modulation, which enables the architecture to easily modify the required behaviour for a module, we show how both types of modulation can be used at the same time and how the activation / inhibition can be seen as a particular case of modulation. Some examples in a real robot illustrate the capabilities of the whole architecture.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arbib, M.A.: Schema Theory. In: Shapiro, S. (ed.) The Encyclopedia of Artificial Intelligence, 2nd edn., pp. 1427–1443. Wiley, New York (1992)
Arkin, R.C.: Behavior Based Robotics. MIT Press, Cambridge (1998)
Becerra, J.A., Santos, J., Duro, R.J.: Multimodule Artificial Neural Network Architectures for Autonomous Robot Control Through Behavior Modulation. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 169–176. Springer, Heidelberg (2003)
Brooks, R.A.: Achieving Artificial Intelligence through Building Robots, A.I. Memo 898, MIT, AI Lab (1986)
Colombetti, M., Dorigo, M., Borghi, G.: Behavior Analysis and Training - A Methodology for Behavior Engineering. IEEE Transactions on Systems, Man and Cybernetics 26(3), 365–380 (1996)
Duro, R.J., Santos, J., Gómez, A.: Synaptic Modulation Based Artificial Neural Networks. In: Sandoval, F., Mira, J. (eds.) IWANN 1995. LNCS, vol. 930, pp. 31–36. Springer, Heidelberg (1995)
Duro, R.J., Santos, J., Becerra, J.A.: Evolving ANN Controllers for Smart Mobile Robots. In: Future Directions for Intelligent Systems and Information Sciences, pp. 34–64. Springer, Heidelberg (2000)
Husbands, P., Smith, T., O’Shea, M., Jakobi, N., Anderson, J., Philippides, A.: Brains, Gases and Robots. Perspectives Neural Comp. 2, 51–63 (1998)
Ishiguro, A., Otsu, K., Fujii, A., Uchikawa, Y.: Evolving an Adaptive Controller for a Legged-Robot with Dynamically-Rearranging Neural Networks. In: Meyer, J.-A., Berthoz, A., Floreano, D., Roitblat, H.L., Wilson, S.W. (eds.) Proc. Supp. 6th Int. Conf. on Simulation of Adaptive Behavior, pp. 235–244 (2000)
Marín, J., Solé, R.V.: Macroevolutionary Algorithms: A New Optimization Method on Fitness Landscapes. IEEE Transactions on Evolutionary Computation 3(4), 272–286 (1999)
Meyer, J.-A., Doncieux, S., Filliat, D., Guillot, A.: Evolutionary Approaches to Neural Control of Rolling, Walking, Swimming and Flying Animats or Robots. In: Duro, R.J., Santos, J., Graña, M. (eds.) Biologically Inspired Robot Behavior Engineering, vol. 109, pp. 1–43. Physica-Verlag (2002)
Harvey, I.: Artificial Evolution and Real Robots. In: Sugisaka, M. (ed.) Proceedings of International Symposium on Artificial Life and Robotics (AROB), Beppu, Japan, pp. 138–141 (1996)
Urzelai, J., Floreano, D., Dorigo, M., Colombetti, M.: Incremental Robot Shaping. Connection Science Journal 10(384), 341–360 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Becerra, J.A., Bellas, F., Santos, J., Duro, R.J. (2005). Complex Behaviours Through Modulation in Autonomous Robot Control. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_88
Download citation
DOI: https://doi.org/10.1007/11494669_88
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)