Skip to main content

Dynamic Classifier Integration Method

  • Conference paper
Multiple Classifier Systems (MCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3541))

Included in the following conference series:

Abstract

The diversity of application domains of pattern recognition makes it difficult to find a highly reliable classification algorithm for sufficiently interesting tasks. In this paper we propose a new combining method, which harness the local confidence of each classifier in the combining process. Our method is at the confluence of two main streams of combining multiple classifiers: classifier fusion and classifier selection. This method learns the local confidence of each classifier using training data and if an unknown data is given, the learned knowledge is used to evaluate the outputs of individual classifiers. An empirical evaluation using five real data sets has shown that this method achieves a promising performance and outperforms the best single classifiers and other known combining methods we tried.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gader, D., Hepp, D., Forester, B., Peurach, T., Mitchell, T.: Pipelined systems for recognition of handwritten digits in USPS ZIP codes. In: Proc. of U.S. Postal Service Advanced Technology Conference, pp. 539–548 (1990)

    Google Scholar 

  2. Kimura, F., Shridhar, M.: Handwritten Numeral Recognition Based on Multiple Algorithms. Pattern Recognition 24(10), 969–983 (1991)

    Article  Google Scholar 

  3. Matsui, T., Noumi, T., Yamashita, I., Wakahara, T., Yoshimuro, M.: State of the Art of Handwritten Numeral Recognition in japan-The results of the First IPTP Character Recognition Competition. In: Proc. of the 2nd ICDAR, pp. 391–396 (1993)

    Google Scholar 

  4. Noumi, T., et al.: Result of Second IPTP Character Recognition Competition and Studies on Multi-Expert Handwritten Numeral Recognition. In: Proc. of 4th IWFHR, pp. 338–346 (1994)

    Google Scholar 

  5. Xu, L., Krzyzak, A., Suen, Y.: Method of Combining Multiple Classifiers and Their Application to Handwritten Numeral Recognition. IEEE Trans. on Systems, Man and Cybernetics 22(3), 418–435 (1992)

    Article  Google Scholar 

  6. Tumer, K., Ghosh, J.: Linear and order statistics combiners for pattern classification. In: Sharkey, A.J.C. (ed.) Combining Artificial Neural Nets, pp. 127–161 (1999)

    Google Scholar 

  7. Tumer, K., Gosh, J.: Error correlation and error reduction in ensemble classifiers, Tech. Report, Dept. of ECE, University of Texas, July 11 (1996)

    Google Scholar 

  8. Jordan, M.I., Jacobs, R.A.: Hierarchical Mixtures of Experts and the EM Algorithm. Neural Computation 6, 181–214 (1994)

    Article  Google Scholar 

  9. Jordan, M.I., Jacobs, R.A.: Modular and Hierarchical Learning Systems. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks (1995)

    Google Scholar 

  10. Avnimelech, R., Intrator, N.: Boosted Mixture of Experts: An Ensemble Learning Scheme. Neural Computation 11(2), 483–497 (1999)

    Article  Google Scholar 

  11. Tang, B., Heywood, M.I., Shepherd, M.: Input partitioning to mixture of experts. In: International Joint Conference on Neural Networks, pp. 227–232 (2002)

    Google Scholar 

  12. Stern, H.: Improving on the mixture of experts algorithm, CSCI 6508: Fundamentals of Computational Neuroscience project, Dalhousie University, Halifax, NS, Canada (2003)

    Google Scholar 

  13. Woods, K.: Combination of Multiple Classifiers Using Local Accuracy Estimates. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(4), 405–410

    Google Scholar 

  14. Mitiche, M., Thomas, D., Nagy, G.: Classifier Combination for Handprinted Digit Recognition. In: Proc. of 2nd Int’l Conf. on DAR, pp. 163–166 (1993)

    Google Scholar 

  15. Tsymbal, A.: Decision Committee Learning with Dynamic Integration of Classifier. LNCS. Springer, Heidelberg (2000)

    Google Scholar 

  16. Mitchell, T.: Machine Learning. Mcgraw Hill, New York (1997)

    MATH  Google Scholar 

  17. Rumelhard, E., Hinton, E., Williams, J.: Learning internal representations by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructures of Cognition. MIT Press, Cambridge (1996)

    Google Scholar 

  18. Blake, C., Keogh, E., Merz, J.: UCI repository of Machine Learning databases (1999), http://www.ics.uci.edu/~mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, E., Ko, J. (2005). Dynamic Classifier Integration Method. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2005. Lecture Notes in Computer Science, vol 3541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494683_10

Download citation

  • DOI: https://doi.org/10.1007/11494683_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26306-7

  • Online ISBN: 978-3-540-31578-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics