Abstract
Recursive ECOC (RECOC) classifiers, effectively deals with microarray data complexity by encoding multiclass labels with codewords taken from Low Density Parity Check (LDPC) codes. Not all good LDPC codes result in good microarray data RECOC classifiers. A general scoring method for the identification of promising LDPC codes in the RECOC sense is presented.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dietterich, T., Bakiri, G.: Error-correcting output codes: A general method for improving multiclass inductive learning programs. In: Proceedings AAAI 1991, pp. 572–577. AAAI Press, Menlo Park (1991)
Yeang, C., Ramaswamy, S., Tamayo, et al: Molecular Classification of Multiple Tumor Types. Bioinformatics, 17 (Suppl. 1), S316-S322 (2001)
Tapia, E., González, J.C., Hütermann, A., et al.: Beyond boosting: Recursive ECOC learning machines. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 62–71. Springer, Heidelberg (2004)
Tanner, M.: A recursive approach to Low Complexity Error Correcting Codes. IEEE Trans. Inf. Theory 27, 533–547 (1981)
Gallager, R.: Low Density Parity-Check Codes. MIT Press, Redmond (1963)
MacKay, D.J.: Good Error Correcting Codes based on Very Sparse Matrices. IEEE Trans. Inf. Theory 45, 399–431 (1999)
Schapire, R., Singer, Y.: Improved Boosting Algorithms Using Confidence - rated Predictions. Machine Learning 37(3), 277–296 (1999)
Dettling, M., Bühlmann, P.: Boosting for Tumor Classification with Gene Expression Data. Bioinformatics 19(9), 1061–1069 (2003)
Shannon, C.: A Mathematical Theory of Communication. The Bell System Tech. Journal XXVII(3), 379–423 (1948)
Witten, I., Frank, E.: Data Mining. In: Practical Machine Learning Tools and Techniques with JAVA Implementations. Morgan Kaufmann Publishers, San Francisco (2000)
Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)
Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1, 81–106 (1986)
Golub, T., Slonim, D., Tamayo, P., et al.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)
Dudoit, S., Fridlyand, J., Speed, T.: Comparison of discrimination methods for the classification of tumors using gene expression data. Technical Report # 576, UC Berkeley (2000)
Yeung, K.Y., Bumgarner, R.E.: Multiclass classification of microarray data with repeated measurements: application to cancer. Genome Biol. 4(12), R83 (2003)
Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Diagnosis of multiple cancer types by shrunken centroids of gene expression. In: PNAS, USA, vol. 99(10) (2002)
Massulli, F., Valentini, G.: Dependence among codeword bits errors in ECOC learning machines: An experimental analysis. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, p. 158. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tapia, E., Serra, E., González, J.C. (2005). Recursive ECOC for Microarray Data Classification. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2005. Lecture Notes in Computer Science, vol 3541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494683_11
Download citation
DOI: https://doi.org/10.1007/11494683_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26306-7
Online ISBN: 978-3-540-31578-0
eBook Packages: Computer ScienceComputer Science (R0)