Skip to main content

Ensemble Learning with Biased Classifiers: The Triskel Algorithm

  • Conference paper
Multiple Classifier Systems (MCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3541))

Included in the following conference series:

Abstract

We propose a novel ensemble learning algorithm called Triskel, which has two interesting features. First, Triskel learns an ensemble of classifiers that are biased to have high precision (as opposed to, for example, boosting, where the ensemble members are biased to ignore portions of the instance space). Second, Triskel uses weighted voting like most ensemble methods, but the weights are assigned so that certain pairs of biased classifiers outweigh the rest of the ensemble, if their predictions agree. Our experiments on a variety of real-world tasks demonstrate that Triskel often outperforms boosting, in terms of both accuracy and training time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hansen, L.K., Salamon, P.: Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 993–1001 (1990)

    Article  Google Scholar 

  2. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: First Int. Workshop on Multiple Classifier Systems, New York (2000)

    Google Scholar 

  3. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Shapire, R.E.: The Strength of Weak Learnability. Machine Learning 5, 197–227 (1990)

    Google Scholar 

  5. Freund, Y.: Boosting a Weak Learning Algorithm by Majority. Information and Computation 121, 256–285 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Freund, Y., Shapire, R.E.: A Decision-Theoretic Generalization of On-Line Learning. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Vapnik, V.N.: Vosstanovlenije Zavisimostej po Empiricheskim Dannym. Nauka (1979) (in Russian)

    Google Scholar 

  8. Murphey, Y.L., Guo, H., Feldkamp, L.A.: Neural learning from unbalanced data. Appl. Intell. 21, 117–128 (2004)

    Article  MATH  Google Scholar 

  9. Muhlbaier, M., Topalis, A., Polikar, R.: Learn++.MT: A New Approach to Incremental Learning. In: 5th Int. Workshop on Multiple Classifier Systems, Cagliari, Italy (2004)

    Google Scholar 

  10. Akbani, R., Kwek, S., Japkowicz, N.: Applying Support Vector Machines to Imabalanced Datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Fürnkranz, J.: Separate and Conquer Rule Learning. Art. Intell. Review 13, 3–54 (1999)

    Article  MATH  Google Scholar 

  12. Platt, J.C.: 12. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Fast Training of Support Vector Machines using Sequential Minimal Optimization, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  13. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  14. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-sampling TEchnique. Journal of Artificial Intelligence Research 16, 341–378 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heß, A., Khoussainov, R., Kushmerick, N. (2005). Ensemble Learning with Biased Classifiers: The Triskel Algorithm. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2005. Lecture Notes in Computer Science, vol 3541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494683_23

Download citation

  • DOI: https://doi.org/10.1007/11494683_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26306-7

  • Online ISBN: 978-3-540-31578-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics