Abstract
In this paper, we propose a cluster-based cumulative representation for cluster ensembles. Cluster labels are mapped to incrementally accumulated clusters, and a matching criterion based on maximum similarity is used. The ensemble method is investigated with bootstrap re-sampling, where the k-means algorithm is used to generate high granularity clusterings. For combining, group average hierarchical meta-clustering is applied and the Jaccard measure is used for cluster similarity computation. Patterns are assigned to combined meta-clusters based on estimated cluster assignment probabilities. The cluster-based cumulative ensembles are more compact than co-association-based ensembles. Experimental results on artificial and real data show reduction of the error rate across varying ensemble parameters and cluster structures.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal on Machine Learning Research (JMLR) 3, 583–617 (2002)
Fred, A., Jain, A.K.: Data clustering using evidence accumulation. In: Proceedings of the 16th International Conference on Pattern Recognition. ICPR 2002, Quebec City, Quebec, Canada, August 2002, vol. 4, pp. 276–280 (2002)
Ayad, H., Kamel, M.: Finding natural clusters using multi-clusterer combiner based on shared nearest neighbors. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 166–175. Springer, Heidelberg (2003)
Ayad, H., Basir, O., Kamel, M.: A probabilistic model using information theoretic measures for cluster ensembles. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 144–153. Springer, Heidelberg (2004)
Kuncheva, L.I., Hadjitodorov, S.T.: Using diversity in cluster ensembles. In: IEEE International Conference on Systems, Man and Cybernetics, Proceedings, The Hague, The Netherlands. (2004)
Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19(9), 1090–1099 (2003)
Minaei, B., Topchy, A., Punch, W.: Ensembles of partitions via data resampling. In: Intl. Conf. on Information Technology: Coding and Computing, ITCC 2004, Proceedings, Las Vegas (April 2004)
Fischer, B., Buhmann, J.M.: Bagging for path-based clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(11), 1411–1415 (2003)
Kuhn, H.: The hungarian method for the assignment problem. Naval Research Logistic Quarterly 2, 83–97 (1955)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, Chichester (2001)
Breiman, L.: Bagging predictors. Machine Learning 26(2), 123–140 (1996)
Kamvar, S., Klein, D., Manning, C.: Interpreting and extending classical agglomerative clustering algorithms using a model-based approach. In: Proceedings of the 19th Int. Conf. Machine Learning, pp. 283–290 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ayad, H.G., Kamel, M.S. (2005). Cluster-Based Cumulative Ensembles. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2005. Lecture Notes in Computer Science, vol 3541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494683_24
Download citation
DOI: https://doi.org/10.1007/11494683_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26306-7
Online ISBN: 978-3-540-31578-0
eBook Packages: Computer ScienceComputer Science (R0)