Abstract
Multiclass SVMs are usually implemented by combining several two-class SVMs. The one-versus-all method using winner-takes-all strategy and the one-versus-one method implemented by max-wins voting are popularly used for this purpose. In this paper we give empirical evidence to show that these methods are inferior to another one-versus-one method: one that uses Platt’s posterior probabilities together with the pairwise coupling idea of Hastie and Tibshirani. The evidence is particularly strong when the training dataset is sparse.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boser, B., Guyon, I., Vapnik, V.: An training algorithm for optimal margin classifiers. In: Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM, Pittsburgh (1992)
Dietterich, T., Bakiri, G.: Solving multiclass problem via error-correcting output code. Journal of Artificial Intelligence Research 2, 263–286 (1995)
Duan, K.-B., Keerthi, S.S.: Which is the best multiclass SVM method? An empirical study. Technical Report CD-03-12, Control Division, Department of Mechanical Engineering, National University of Singapore (2003)
Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: Jordan, M.I., Kearns, M.J., Solla, A.S. (eds.) Advances in Neural Information Processing Systems, vol. 10. MIT Press, Cambridge (1998)
Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 13, 415–425 (2002)
Lin, H.-T., Lin, C.-J., Weng, R.C.: A note on Platt’s probabilistic outputs for support vector machines (2003), Available: http://www.csie.ntu.edu.tw/~cjlin/papers/plattprob.ps
Platt, J.: Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola, A.J., Bartlett, P., Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 61–74. MIT Press, Cambridge (1999)
Platt, J., Cristanini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classification. In: Advances in Neural Information Processing Systems, vol. 12, pp. 543–557. MIT Press, Cambridge (2000)
Rifkin, R., Klautau, A.: In defence of one-versus-all classificaiton. Journal of Machine Learning Research 5, 101–141 (2004)
Roth, V.: Probabilistic discriminant kernel classifiers for multi-class problems. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 246–253. Springer, Heidelberg (2001)
Vapnik, V.: Statistical Learning Theory. Wiley Interscience, Hoboken (1998)
Wu, T.-F., Lin, C.-J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research 5, 975–1005 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Duan, KB., Keerthi, S.S. (2005). Which Is the Best Multiclass SVM Method? An Empirical Study. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2005. Lecture Notes in Computer Science, vol 3541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494683_28
Download citation
DOI: https://doi.org/10.1007/11494683_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26306-7
Online ISBN: 978-3-540-31578-0
eBook Packages: Computer ScienceComputer Science (R0)