Abstract
We have previously introduced the Learn + + algorithm that provides surprisingly promising performance for incremental learning as well as data fusion applications. In this contribution we show that the algorithm can also be used to estimate the posterior probability, or the confidence of its decision on each test instance. On three increasingly difficult tests that are specifically designed to compare posterior probability estimates of the algorithm to that of the optimal Bayes classifier, we have observed that estimated posterior probability approaches to that of the Bayes classifier as the number of classifiers in the ensemble increase. This satisfying and intuitively expected outcome shows that ensemble systems can also be used to estimate confidence of their output.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kuncheva, L.I.: Combining Pattern Classifiers, Methods and Algorithms. Wiley Interscience, Hoboken (2004)
Freund, Y., Schapire, R.: A decision theoretic generalization of on-line learning and an application to boosting. Computer and System Sci. 57(1), 119–139 (1997)
Kuncheva, L.I.: A Theoretical Study on Six Classifier Fusion Strategies. IEEE Trans. Pattern Analysis and Machine Intelligence 24(2), 281–286 (2002)
Lewitt, M., Polikar, R.: An ensemble approach for data fusion with Learn++. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 176–186. Springer, Heidelberg (2003)
Polikar, R., Udpa, L., Udpa, S., Honavar, V.: Learn + + : An incremental learning algorithm for supervised neural networks. IEEE Trans. on System, Man and Cybernetics (C) 31(4), 497–508 (2001)
Duin, R.P., Tax, M.: Classifier conditional posterior probabilities. In: Amin, A., Pudil, P., Dori, D. (eds.) SPR 1998 and SSPR 1998. LNCS, vol. 1451, pp. 611–619. Springer, Heidelberg (1998)
Duda, R., Hart, P., Stork, D.: In: Pattern Classification 2/e, Ch. 3&4, pp. 80–214. Wiley Interscience, New York (2001)
Alpaydin, E., Jordan, M.: Local linear perceptrons for classification. IEEE Transactions on Neural Networks 7(3), 788–792 (1996)
Wilson, D., Martinez, T.: Combining cross-validation and confidence to measure fitness. In: IEEE Joint Conf. on Neural Networks, vol. 2, pp. 1409–1414 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Muhlbaier, M., Topalis, A., Polikar, R. (2005). Ensemble Confidence Estimates Posterior Probability. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2005. Lecture Notes in Computer Science, vol 3541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494683_33
Download citation
DOI: https://doi.org/10.1007/11494683_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26306-7
Online ISBN: 978-3-540-31578-0
eBook Packages: Computer ScienceComputer Science (R0)