Skip to main content

Searching for Relevance in the Relevance of Search

  • Conference paper
Context: Nature, Impact, and Role (CoLIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3507))

Abstract

Discussion of relevance has permeated the information science literature for the past 50+ years, and yet we are no closer to resolution of the matter. In this research we developed a set of measures to operationalize the dimensions underpinning Saracevic’s manifestations of relevance. We used an existing data set collected from 48 participants who used a web search engine to complete four search tasks that represent four subject domains. From this study which had assessed multiple aspects of the search process – from cognitive to behavioural – we derived a set of measures for cognitive, motivational, situational, topical and system relevances. Using regression analysis, we demonstrate how the measures partially predict search success, and additionally use factor analysis to identify the underlying constructs of relevance. The results show that Saracevic’s five manifestations may be merged into three types that represent the user, system and the task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barry, C.L., Schamber, L.: Users’ criteria for relevance evaluation: A cross-situational comparison. Inform Process Manag. 34, 219–236 (1998)

    Article  Google Scholar 

  2. Borlund, P.: The concept of relevance in IR. J. Am. Soc. Inform. Sci. 54(10), 913–925 (2003)

    Article  Google Scholar 

  3. Borlund, P., Ingwersen, P.: The development of a method for the evaluation of interactive information retrieval systems. J. Doc. 53(3), 225–250 (1997)

    Article  Google Scholar 

  4. Cleverdon, C.W.: Information and its retrieval. In: ASLIB Proc., vol. 22, pp. 538–549 (1960)

    Google Scholar 

  5. Cosijn, E., Ingwersen, P.: Dimensions of relevance. Inform Process Manag. 36, 533–550 (2000)

    Article  Google Scholar 

  6. DeLone, W.H., McLean, E.R.: Information systems success: the quest for the dependent variable. Inform. Syst. Res. 3(1), 60–95 (1992)

    Article  Google Scholar 

  7. Delone, W.H., McLean, E.R.: Information systems success revisited. In: 35th HICSS Proc. (2002)

    Google Scholar 

  8. Greisdorf, H.: Relevance thresholds: a multi-stage predictive model of how users evaluate information. Inform Process Manag. 39(3), 403–423 (2003)

    Article  MATH  Google Scholar 

  9. Harter, S.: Psychological relevance and information science. J. Am. Soc. Inform. Sci. 43, 602–615 (1992)

    Article  Google Scholar 

  10. Harter, S.P., Hert, C.A.: Evaluation of information retrieval systems: Approaches, issues, and methods. Annu. Rev. Inform. Sci. 32, 3–94 (1997)

    Google Scholar 

  11. Ingwersen, P.: Cognitive perspectives of information retrieval interaction: elements of a cognitive IR theory. J. Doc. 52(1), 3–50 (1996)

    Article  Google Scholar 

  12. ISO.: Ergonomic requirements for office work with visual display terminals (VDTs): Part 11.Guidance on usability. ISO 9241-11-1998 (1998)

    Google Scholar 

  13. Kekäläinen, J., Järvelin, K.: Using graded relevance assessments in IR evaluation. J. Am. Soc. Inform. Sci. 53(13), 1120–1129 (2002)

    Article  Google Scholar 

  14. Maglaughlin, K.L., Sonnenwald, D.H.: User perspectives on relevance criteria: A comparison among relevant, partially relevant, and not-relevant judgments. J. Am. Soc. Inform. Sci. 53(5), 327–342 (2002)

    Article  Google Scholar 

  15. Mizzaro, S.: How many relevances in information retrieval? Interact Comput. 10(3), 303–320 (1998)

    Article  Google Scholar 

  16. Reid, J.: A new task-oriented paradigm for information retrieval: implications for evaluation of information retrieval systems. In: CoLIS3 Proc., pp. 97–108 (1999)

    Google Scholar 

  17. Saracevic, T.: Relevance: a review of and a framework for the thinking on the notionsin information science. J. Am. Soc. Inform. Sci. 26, 321–343 (1975)

    Article  Google Scholar 

  18. Saracevic, T.: Relevance reconsidered. In: CoLIS Proc., vol. 2, pp. 201–218 (1996)

    Google Scholar 

  19. Schamber, L.: Relevance and information behavior. ARIST, 3-48 (1994)

    Google Scholar 

  20. Schamber, L., Eisenberg, M.B., Nilan, M.S.: A re-examination of relevance: toward a dynamic, situational definition. Inform Process Manag. 26, 755–775 (1990)

    Article  Google Scholar 

  21. Spink, A., Greisdorf, H.: Regions and levels: Measuring and mapping users’ relevance judgments. J. Am. Soc. Inform. Sci. 52(2), 161–173 (2001)

    Article  Google Scholar 

  22. Spink, A., Greisdorf, H., Bateman, J.: From highly relevant to not relevant: examining different regions of relevance. Inform Process Manag. 34, 599–621 (1998)

    Article  Google Scholar 

  23. Su, L.T.: Evaluation measures for interactive information retrieval. Inform Process Manag. 28(4), 503–516 (1992)

    Article  Google Scholar 

  24. Tabachnick, B.G., Fidell, L.S.: Using multivariate statistics, 4th edn. Allyn & Bacon (2001)

    Google Scholar 

  25. Tague-Sutcliffe, J.: Measuring Information. Academic Press, New York (1995)

    Google Scholar 

  26. Tague-Sutcliffe, J., Toms, E.G.: Information systems design via the quantitative analysis of user transaction logs. In: Presented at the 5th ICSI, River Forest, Illinois (1995)

    Google Scholar 

  27. Tang, R., Solomon, P.: Towards an understanding of the dynamics of relevance judgments: an analysis of one person’s search behavior. Inform Process Manag. 34, 237–256 (1998)

    Article  Google Scholar 

  28. Toms, E.G., Freund, L., Kopak, R., Bartlett, J.C.: The effect of task domain on search. In: CASCON, IBM, Toronto, pp. 303–312 (2003)

    Google Scholar 

  29. Vakkari, P., Sormunen, E.: The influence of relevance levels on the effectiveness of interactive information retrieval. J. Am. Soc. Inform. Sci. 55(11), 963–969 (2004)

    Article  Google Scholar 

  30. Wildemuth, B.M., Barry, C., Luo, L., Oh, S.: Establishing a research agenda for studies of online search behaviors: a Delphi sStudy (2004), for details of the study, and preliminary reports http://ils.unc.edu/sig_use_delphi/

  31. Yuan, W., Meadow, C.T.: A study of the use of variables in information retrieval user studies. J. Am. Soc. Iinform. Sci. 50, 140–150 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Toms, E.G., O’Brien, H.L., Kopak, R., Freund, L. (2005). Searching for Relevance in the Relevance of Search. In: Crestani, F., Ruthven, I. (eds) Context: Nature, Impact, and Role. CoLIS 2005. Lecture Notes in Computer Science, vol 3507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11495222_7

Download citation

  • DOI: https://doi.org/10.1007/11495222_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26178-0

  • Online ISBN: 978-3-540-32101-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics