
Operational Semantics of Security Protocols

Cas Cremers and Sjouke Mauw

Eindhoven University of Technology,

Department of Mathematics and Computer Science,

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands,

e-mail: {ccremers,sjouke}@win.tue.nl

Abstract

Based on a concise domain analysis we develop a formal semantics of se-
curity protocols. Its main virtue is that it is a generic model, in the sense
that it is parameterized over e.g. the intruder model. Further characteristics
of the model are a straightforward handling of parallel execution of multiple
protocols, locality of security claims, the binding of local constants to role
instances, and explicitly defined initial intruder knowledge. We validate our
framework by analysing the Needham-Schroeder-Lowe protocol.

1 Introduction

Security protocols are often expressed in the form of a diagram displaying the in-
teractions between the principals, such as a Message Sequence Chart. The MSC
in Figure 1 describes perhaps the most well-known example of a flawed security
protocol. We will explain the details in Section 4. The protocol was developed in
1978 by Roger Needham and Michael Schroeder [14] and proven correct with BAN
logic [3] in 1989. In 1995 Gavin Lowe found an attack on the protocol [8], because
he assumed a more powerful intruder model, allowing agents to conspire with the
intruder. This so-called man-in-the-middle attack is displayed in Figure 2. Cur-
rently, this situation is explained by pointing at a shift of the assumptions on the
environment of the system: from a trusted local network that should be protected
against external threats to a network with internal attackers.

This example clearly shows that a theory of security protocols should be flexible
enough to vary over the parameters that determine the problem, such as the intruder
model. Looking at Figure 1 it is clear that this informal protocol specification states
nothing about the precise intruder model assumed. In fact, more information is
lacking. Information which is needed to precisely understand the meaning of this
diagram. How does an agent check, for instance, if an incoming message satisfies
the expected message format? If we assume that he will not check the types of the
messages, yet another attack will become viable, which is called a type-flaw attack.

It is our goal to give an unambiguous and generic description of the interpre-
tation of such security protocols and what it means for a protocol to ensure some
security property. Although the security protocol takes the shape of a Message Se-
quence Chart, there is so much additional structure in the problem that we cannot
rely on the MSC semantics to provide an answer. Therefore, we will define a formal
semantics of security protocols.

1

Our first step to come to a formal semantics is to conduct a concise domain
analysis (loosely following [12]). The purpose of this step is to informally sketch
the issues that make up the problem space and its boundaries. We will identify the
points of variation and decide whether these are considered as parameters of the
problem or that design decisions have to be made. In this process we are guided by
the following starting points. First of all, the formal model must be generic (e.g.
over the intruder model). Second, the formal model should offer a framework to
verify security protocols, both manually and with computer support. Third, the
formal model should be easily extendable with additional features (such as forward
secrecy) to make it applicable to a wide range of problems. Finally, the formal model
should enable the development of meta-theory (e.g. compositionality properties of
security protocols). We have chosen to define an operational semantics based on
state transitions.

The rest of this paper is structured as follows. In Section 2 we will conduct
a short domain analysis and introduce the basic concepts. Section 3 describes an
operational semantics of security protocols, based on the domain analysis. We will
validate our semantical approach by formally analysing the Needham-Schroeder
protocol in Section 4. In Section 5 we discuss the relation between our approach
and other published models and in Section 6 we will summarise our results and
provide an outlook on future research.

〈SKi, PKi〉, PKr

i

〈SKr, PKr〉, PKi

r

nonce ni

{i, ni}PKr

nonce nr

{ni, nr}PKi

{nr}PKr

i and r are communicating
i and r share secrets ni and nr

msc Needham-Schroeder

Figure 1: The Needham-Schroeder public key authentication protocol. (The full
notation will be explained in Section 4).

Acknowledgements. Thanks are due to Erik de Vink for his comments on our
work and the stimulating discussions on security protocol semantics. Furthermore,
we would like to thank Niek Palm for his study on the application of our semantics
to the verification of a collection of security protocols.

2

〈SKa, PKa〉, PKe

a : i(a, e)

Intruder

(e) (a)

〈SKb, PKb〉, PKa

b : r(a, b)

nonce na

{a, na}PKe

{a, na}PKb

nonce nb

{na, nb}PKa

{na, nb}PKa

{nb}PKe

{nb}PKb

“I am talking to a”knows nb

msc Man-in-the-middle attack

Figure 2: Man-in-the-middle attack on the Needham-Schroeder protocol.

2 Security protocols: a domain analysis

Rather than starting right away with the development of a formal semantics we first
conduct a concise domain analysis. The purpose of this analysis is to make some of
the design decisions explicit and to decompose the problem into smaller parts.

We start with the following informal description of involved concepts. A security
protocol describes a number of behaviours. Each such behaviour we will call a role.
We have, for instance, the initiator role and the responder role in a protocol. A
system consists of a number of communicating agents. Each agent performs one
or more roles (possibly from several security protocols). A role performed by an
agent is called a run. For instance, agent a can perform two initiator runs and one
responder run in parallel. The agents execute their runs to achieve some security
goal (e.g. the confidential exchange of a message). While agents pursue their goals,
an intruder may try to oppose them. The capabilities of the intruder determine its
strength in attacking a protocol run. However, threats do not only come from the
outside. Agents partaking in a protocol run may also conspire with the intruder
and try to invalidate the security goals. In order to resist attacks, an agent can
make use of cryptographic primitives when constructing messages.

Given this global description, we can identify the following components of the
security protocol model.

3

Protocol specification
Agent model
Communication model
Threat model
Cryptographic primitives
Security requirements

We will discuss each of these sub-models, list their points of variation and make ap-
propriate design decisions. Of course, every subdivision of the problem is artificial,
but we found that this approach helped in adding structure and restricting the prob-
lem space. The sub models mentioned are not independent entities. For instance,
the protocol specification makes use of the provided cryptographic primitives and
the communication model is connected to the intruder model if the intruder has
complete control over the network.

Protocol specification. The protocol specification describes the behaviour of
each of the roles in the protocol. We consider this as a parameter of our seman-
tics. We define an (abstract) syntax to specify a security protocol. Most often, a
role in a security protocol is specified as a sequential list of events. In practise, a
security enhanced communication protocol requires a more expressive specification
language, but for an abstract description of e.g. an authentication protocol a se-
quential list will suffice. The set of events usually contains send and read events.
Furthermore, we will consider security claims as special events. Timers (and all
time related information) are not included in our model. A protocol specification
is not complete without a specification of the initial knowledge required to execute
a role and the declaration of functions, constants and variables occurring in the
protocol specification. The protocol specification is expressed in a formal language
for which we will define an abstract syntax and static requirements.

Agent model. Agents execute the roles of the protocol. The agent model is
based on a closed world assumption. By this we mean that honest agents show no
behaviour other than the behaviour described in the protocol specification. Thus,
unless specified explicitly in the protocol, an honest agent will never leak classified
information. The closed world assumption does not imply that an agent will only
execute one run of the protocol. We assume that an agent may execute any number
of runs in parallel (in an interleaved manner). Although restrictions on the number
(and type) of runs may be of interest in practical applications, we will not param-
eterise over this property. The agent model also describes how an agent interprets
a role description. An agent executes its role description sequentially, waiting at
read events until an expected input message becomes available. This implies that
an agent ignores unanticipated messages. More specifically, an incoming message
will be matched against the expected message format as described in the protocol
specification. Our semantics will be parameterized over this matching function, e.g.
to allow for detection of type-flaw attacks.

Communication model. The communication model describes how the messages
between the agents are exchanged. We have chosen the model of asynchronous
communication. This model is more general than the synchronous communication
model. Thus, if a security protocol is proven correct in the asynchronous model it

4

will also be correct in the synchronous model. Assuming asynchronous communi-
cation, the next step is to select the type of buffering. Again, we will choose the
most general model: one single multiset buffer for all agents.

Threat model. In 1983 Dolev and Yao led the basis for a network threat model
that is currently the most widely used model [6]. In the Dolev-Yao model the in-
truder has complete control over the communication network. The intruder can
intercept any message and insert any message, as long as he is able to construct
its contents from his knowledge. Conspiring agents are modeled by including their
initial knowledge in the knowledge of the intruder. Intruder models that are weaker
than the Dolev-Yao model are also of interest, for instance when studying protocol
stacks or special communication media. Wireless communication, for instance, im-
plies that an intruder has the choice of jamming or eavesdropping, but not both for
the same message. Therefore, we will consider the intruder model as a parameter
of our semantics.

Cryptographic primitives. Cryptographic primitives are (idealized) mathemat-
ical constructs such as encryption. In our treatment of cryptographic primitives we
use the so-called black box approach. This means that we do not exactly know
which mathematical objects are used to implement such constructs, but that we
only know their relevant properties. We will only consider symmetric and asym-
metric encryption and discard other primitives, such as signing. The perfect cryp-
tography assumption roughly states that nothing can be learned of a plain text from
its encrypted version, without knowing the decryption key.

Security requirements. Security requirements state the purpose of a security
protocol. They are mostly expressed as safety properties (i.e. something bad will
never happen). In our semantics we will only study secrecy and two forms of
authentication. However, the semantics is set up in such a way that other trace-
based security properties are evenly expressible.

In the next section, we will make the above models precise.

3 Formal semantics

In this section we will use the domain analysis as a starting point for the development
of an operational semantics. First, in Section 3.1, we define the security protocol
level which specifies the roles of a protocol. The cryptographic primitives are also
treated here. Next, in Section 3.2, the abstract syntax is provided with a static
semantics. The roles only define behaviour schemes, which are instantiated into
runs in Section 3.3. This section also contains the agent model by describing the
operational rules which define the behaviour of a network of agents. The threat
model is described in Sections 3.4 and 3.5. The latter contain some examples of
intruder capabilities. Finally, in Section 3.6, we define secrecy and synchronisation,
which is a strong authentication property.

5

3.1 Security protocol specification

A protocol specification defines the exchange of message terms between agents. We
start by explaining a number of basic elements of these terms, such as constants,
roles and variables. Next, we add constructors for pairing and tupling to construct
the set RoleTerm, that will be used in role descriptions.

Basic sets. We start off with the following sets: V (denoting variables), C (de-
noting constants which are local to each instantiation of a role), R (denoting roles),
and F (denoting function names). Functions from the set F are considered to be
global, and have an arity which must be respected in all terms. If global constants
occur in a protocol, we model them as functions of arity zero. In Table 1 we show
some typical elements of these sets, as used throughout this paper.

Terms. We introduce constructors for pairing and encryption, and we assume
that pairing is associative.

RoleTerm ::= V | R | F(RoleTerm∗) | C |

(RoleTerm ,RoleTerm) | {RoleTerm}RoleTerm

Description Set Typical elements
Variables V V, W, X, Y, Z
Constants C ni, nr, sessionkey
Roles R i, r, s
Functions F sk, pk, k, hash
Trusted agents AT a, b, c
Untrusted agents AU e

Table 1: Basic sets and some typical elements

Terms that have been encrypted with a term, can only be decrypted by either
the same term (for symmetric encryption) or the inverse key (for asymmetric en-
cryption). To determine which term needs to be known to decrypt a term, we
introduce a function that yields the inverse for any role term.

−1 : RoleTerm → RoleTerm

We require that −1 is its own inverse, i.e. (t−1)−1 = t. Terms are reduced according
to {{s}t}t−1 = s.

Throughout this article we will assume that pk and sk are functions of arity 1,
that map to asymmetric keys, such that ∀r∈Rpk(r)−1 = sk(r) and vice versa. All
other terms t are considered to be symmetric keys, for which we have t−1 = t.

Role Knowledge. Besides terms to be sent and received, a role specification
describes the initial knowledge needed to execute the role We define a role knowledge
set as RoleKnow = P(RoleTerm).

6

Role specification. We define a role specification as a set of initial knowledge,
and a list of events. We define the set of events E using two new sets: labels L and
security claims Claim , which we explain below.

E =
{

send `(r, r
′, t), read `(r

′, r, t), claim`(r, c [, t])
∣

∣

` ∈ L, r, r′ ∈ R, t ∈ RoleTerm , c ∈ Claim
}

Event send `(r, r
′, t) denotes the sending of message t by r, apparently to r′. Like-

wise, read `(r
′, r, t) denotes the reception of message t by r′, apparently sent by r.

Event claim `(r, c [, t]) expresses that r upon execution of this event expects security
goal c to hold with optional parameter t. A claim event denotes a local claim, which
means that it only concerns role r and does not express any expectations at other
roles.

The labels ` extending the events are needed to disambiguate similar occurrences
of the same event in a protocol specification. A second use of these labels will be
to express the relation between corresponding send and read events, as we will see
in Section 3.6.

Now we can specify a role. A role specification consists of a list of events, and
some initial knowledge: RoleSpec = RoleKnow × E∗.

Protocol specification. A protocol specifies the behaviour for a number of roles
by means of a partial function from the set ProtSpec = R → RoleSpec.

We will use MRp(r) as a shorthand for the initial knowledge of role r in a
protocol specification p. In many cases we omit the parameter p if the intented
protocol is clear from the context.

Example. The following role description models the initiator role of the Needham-
Schroeder protocol, without any security requirements.

ns(i) =
(

{i, r, ni, sk(i), pk(i), pk(r)},

send1(i, r, {i, ni}pk(r)) ·

read2(r, i, {ni, V }pk(i)) ·

send3(i, r, {V }pk(r))
)

This role description follows from Figure 1 by selecting the left-most axis and its
associated events. Notice that we have to clarify which constructs in the terms are
variables (because they receive their value at reception of a message) and which
are constants (because they are determined by the role itself). Therefore, we define
i, r ∈ R, ni ∈ C, sk, pk ∈ F , pk(i)−1 = sk(i), pk(r)−1 = sk(r), 1, 2, 3 ∈ L, and
V ∈ V .

3.2 Static Requirements

In the previous section we have explained the context-free abstract syntax for a
protocol specification. A proper protocol specification will also have to satisfy a
number of well-formedness rules.

7

Well-Formed Roles. For each role, we require that it meets certain criteria.
These range from the fairly obvious, e.g. each event in a role definition has the
same actor, to more subtle requirements regarding the messages. For the messages
we require that the messages that are sent can actually be constructed by the sender.
This is satisfied if the message is in the knowledge of the sending role. For variables
we require that they first occur in a read event, where they are instantiated, before
they can occur in a send event.

For read events the situation is a bit more complex. As can be seen in the exam-
ple above, which describes the initiator role of the Needham-Schroeder protocol, a
read event may impose some structure upon the incoming messages. A receiver can
only match a message against such an expected pattern if his knowledge satisfies
certain requirements.

We introduce a predicate WF (Well Formed) to express that a role definition
meets these consistency requirements, using an auxiliary predicate Readable and a
knowledge inference operator ` : RoleKnow × RoleTerm .

Agents can compose and decompose pair terms. A term can be encrypted if the
agent knows the encryption key, and an encrypted term can be decrypted if the
agent knows the corresponding decryption key. This is expressed by the knowledge
inference operator, which is defined inductively as follows.

t ∈ M =⇒ M ` t

M ` t1 ∧ M ` t2 ⇐⇒ M ` (t1, t2)

M ` t ∧ M ` k =⇒ M ` {t}k

M ` {t}k ∧ M ` k−1 =⇒ M ` t

Composing terms t1, t2 into a term t by encryption or tupling implies that t has
t, t1 and t2 as subterms. The subterm operator v is inductively defined as follows.

t v t t1 v (t1, t2) t1, . . . , tn v f(t1, . . . , tn)

t v {t}k t2 v (t1, t2)

The predicate Readable : RoleKnow ×RoleTerm expresses which role terms can
be used as a message pattern for a read event of an agent with a specific knowledge
set. A variable can always occur in a read pattern. Any other term can only occur
in a read pattern, if it can be inferred from the knowledge of the agent. Only then
can it be compared to the incoming messages.

In order to be able to read a pair, we must be able to read each constituent,
while extending the knowledge with what can be inferred from the other component.
An encrypted message can be read if it can be inferred from the knowledge or if it
can be inferred after decryption, which requires that the decryption key is in the
knowledge.

Readable(M, t) =

True if t ∈ V
M ` t if t ∈ C ∪R ∪ F(RoleTerm∗)
Readable(M ∪ {t2}, t1) ∧ Readable(M ∪ {t1}, t2) if t ≡ (t1, t2)
(M ` {t1}t2) ∨ (M ` t2

−1 ∧ Readable(M, t1)) if t ≡ {t1}t2

8

We can now construct the predicate WF : R × RoleSpec, that expresses that a
role is well formed. The first argument of this predicate is used to express that
the active role in an event should match the role which behaviour is being defined.
Terms occurring in a send or claim event must be inferable from the knowledge,
while terms occurring in a read event must be readable according to the definition
above.

WF (r, (M, s)) =

True if s ≡ ε
M ` (r′, r) ∧ Readable(M, t) ∧ WF (r, (M ∪ {t}, s′)) if s ≡ read `(r

′, r, t) · s′

M ` (r, r′, t) ∧ WF (r, (M, s′)) if s ≡ send `(r, r
′, t) · s′

M ` (r [, t]) ∧ WF (r, (M, s′)) if s ≡ claim `(r, c [, t]) · s′

False otherwise

For a protocol specification p we require that all roles are well formed with respect
to their initial knowledge, which is expressed by: ∀r∈dom(p)WF (r, p(r)).

Examples. The next two examples are incorrect role descriptions:

wrong1 (i) = ({i, r, k}, wrong2 (i) = ({i, r, k},
send1(i, r, {i, r, V }k)· read1(r, i, {i, r, {V }k2}k)·
read2(r, i, {V, r}k)) send2(i, r, {V }k2))

Role description wrong1 is not well formed because it sends variable V before
it is read. The read event in wrong2 contains a subterm {V }k2. The intention
is that V is initialised through this read. However, since k2 is a symmetric key,
and k2 is not in the knowledge of the role, the value of V cannot be determined
through this read. Therefore, this role description is not well formed. The correct
role description would be the following:

wrong2corrected(i) = ({i, r, k},
read1(r, i, {i, r, W}k)·
send2(i, r, W))

3.3 Runs

The protocol specification describes a set of roles. These roles serve as a blueprint
for what the actual agents in a system should do. A run is defined as an instantiated
role. In order to instantiate a role we have to bind the role names to the names of
actual agents and we have to make the local constants unique for each instantia-
tion. Furthermore, we have to take into account that the bindings of values to the
variables are local to a run too. Thus, the set of terms occurring in a run differs
from the set of terms used in role descriptions.

Run terms. We assume existence of a set Runid to denote run identifiers and a
set A to denote agents. The set A is partitioned into sets AT (denoting the trusted
agents) and AU (denoting the untrusted agents). Run terms are defined similarly
to role terms. The difference is that abstract roles are replaced by concrete agents,
that local constants are made unique by extending them with a run identifier, and
that variables are instantiated by concrete values. The run term set also includes

9

the set CI of terms constructed by an intruder. This set will only be used from
Section 3.4 onwards, and it will be explained there. As for role terms, we have
associativity of pairing.

RunTerm ::= A | F(RunTerm∗) | C]Runid | CI |

(RunTerm,RunTerm) | {RunTerm}RunTerm

Instantiation. A role term is transformed into a run term by applying an instan-
tiation.

Inst = Runid × (R → A) × (V → RunTerm)

The first component of an instantiation determines with which run identifier
the constants are extended. The second component determines the instantiation of
roles by agents. The third determines the valuation of the variables.

We extend the inverse function to RunTerm. The functions roles : RoleTerm →
P(R) and vars : RoleTerm → P(V) determine the roles and variables occurring in
a term. We extend these functions to the domain of RoleSpec in the obvious way.

For instantiation (rid, ρ, σ) ∈ Inst , f ∈ F and terms t, t1, . . . , tn ∈ RoleTerm
such that roles(t) ⊆ dom(ρ) and vars(t) ⊆ dom(σ), we define instantiation by:

(rid, ρ, σ)(t) =

ρ(r) if t ≡ r ∈ R
f((rid, ρ, σ)(t1), . . . , (rid, ρ, σ)(tn)) if t ≡ f(t1, . . . , tn)
c]rid if t ≡ c ∈ C
σ(v) if t ≡ v ∈ V
((rid, ρ, σ)(t1), (rid, ρ, σ)(t2)) if t ≡ (t1, t2)
{(rid, ρ, σ)(t1)}(rid,ρ,σ)(t2) if t ≡ {t1}t2

Example. We give two examples of instantiations that might occur in the execu-
tion of a protocol:

(

1, {i 7→ a, r 7→ b}, ∅
) (

{i, ni}pk(r)

)

= {a, ni]1}pk(b)
(

2, {i 7→ c, r 7→ d}, {W 7→ ni]1}
) (

{W, nr, r}pk(i)

)

= {ni]1, nr]2, d}pk(c)

Runs. A run is an instantiated role specification. As the knowledge of a role
is already statically defined by the role description, we can omit it from the run
specification and define Run = Inst × E∗. As we will see later on, each run in the
system will have a unique run identifier by construction.

State. The system that we consider consists of a number of runs executed by some
agents. Communication between the runs is asynchronous (buffered). In order to
conveniently model the intruder behaviour, we will route communication through
two buffers: one output buffer from the sending run and one input buffer from the
receiving run (for a discussion on the expressive power of such construction, see [7]).
The intruder capabilities will determine how the messages are transferred from the
output buffer to the input buffer.

Both the output buffer and the input buffer store sent messages. Messages
contain a sender, a recipient, and a run term: MSG = A ×A × RunTerm. Notice
that, if we identify set product with pairing, we obtain MSG ⊂ RunTerm. A buffer
is a multiset of such messages: Buffer = M(MSG).

10

Since the knowledge of the intruder is dynamic, we will consider this a component
in the state of the system, too. It consists of instantiated terms as they occur in
the runs, and is represented by RunKnow = P(RunTerm).

The state of a network of agents executing roles in a security protocol is defined
by

State = RunKnow × Buffer × Buffer ×P(Run),

and thus contains the intruder knowledge, the contents of the output buffer, the
contents of the input buffer, and the (remainders of the) runs that still have to be
executed.

Match. Messages from the buffer are accepted by agents if they match a certain
pattern, specified in the read event. We introduce a predicate Match that expresses
that a message matches the pattern for some instantiation of the variables. The
definition of this predicate is a parameter of our system, but we will give an example
of a straightforward typed match.

For each variable, we define a set of run terms which are allowed values. We
introduce an auxiliary function type : V → P(RunTerm), that defines the set
of run terms that are valid values for a variable. Then we define the predicate
Welltyped on (V → P(RunTerm)), that expresses that a substitution is well-typed:
Welltyped (σ) = ∀v∈dom(σ)

(

σ(v) ∈ type(v)
)

.
Using this predicate, we define the typed matching predicate Match : Inst ×

RoleTerm×RunTerm×Inst . The purpose of this predicate is to match an incoming
message (the third argument) to a pattern specified by a role term (the second
argument). This pattern is already instantiated (the first argument), but may
still contain free variables. The idea is to assign values to the free variables such
that the incoming message equals the instantiated role term. The old instantiation
extended with these new assignments provides the resulting instantiation (the fourth
argument).

Match(inst, pt, m, inst′) ⇐⇒ inst = (rid, ρ, σ) ∧ inst′ = (rid, ρ, σ′) ∧

σ ⊆ σ′ ∧ dom(σ′) = dom(σ) ∪ vars(pt) ∧

Welltyped(σ′) ∧ (rid, ρ, σ′)(pt) = m

Assume ρ = {i 7→ a, r 7→ b}. Then, some examples for which the predicate is
true are:

inst pt m inst′

Match((1, ρ, ∅), X, nr]2, (1, ρ, {X 7→ nr]2})) ⇐⇒ True
Match((1, ρ, ∅), {r, ni}pk(i), {b, ni]1}pk(a), (1, ρ, ∅)) ⇐⇒ True

Some examples where the predicate does not hold, if we assume matching is
typed, and the type of X is the set A ∪ C]Runid ∪ CI

inst pt m inst′

Match((1, ρ, ∅), nr, nr]2,) ⇐⇒ False
Match((1, ρ, ∅), X, (nr]2, ni]1),) ⇐⇒ False
Match((1, ρ, ∅), {i, ni}pk(i), {b, ni]1}pk(a),) ⇐⇒ False

By varying over the function type we can express whether the protocol is vul-
nerable to type flaw attacks or not. This also allows for expressing that only basic
type flaws can be detected by the agents.

11

Derivation rules. The behaviour of the system is defined as a transition relation
(see [15]) between system states. A transition is labeled with an element of the
set Transitionlabel ::= (Inst , E) | create(Run) | Networkrules(MSG). The set of
network/intruder rules Networkrules is a parameter of the system, and we will
discuss some of the possibilities in Section 3.5.

A protocol description allows for the creation of runs. The runs that can be
created are defined by the function runsof : ProtSpec → P(Run) :

runsof (p) =
{

(

(rid, ρ, ∅), p(r)
)

∣

∣

∣
r ∈ dom(p) ∧ rid ∈ Runid ∧ ρ ∈ roles(p(r)) ×A

}

For F ∈ P(Run) we use F [r′/r] to denote the substitution of r by r′ in F . We
define the set of active run identifiers as

runids(F) =
{

rid
∣

∣

∣

(

(rid, ρ, σ), ev
)

∈ F
}

Let p ∈ ProtSpec. Then the basic derivation rules for the system are given in
Table 2. The create rule expresses that a new run can only be created if its run
identifier has not been used yet. The send rule states that if a run executes a
send event, the sent message is added to the output buffer and the executing run
proceeds to the next event. The read rule determines when an input event can be
executed. It requires that the (partially) instantiated pattern specified in the read
event should match any of the messages from the input buffer. Upon execution of
the read event, this message is removed from the input buffer and the executing run
advances to the next event. The claim rule expresses that an enabled claim event
can always be executed. Notice that in all these cases the intruder knowledge is not
affected. The dynamical behaviour of the intruder knowledge will be defined by the
network/intruder rules in Section 3.5.

A state transition is the conclusion of finitely many applications of these rules.
In this way, starting from the initial state, we can derive all possible behaviours of
a system executing security protocol p. This is what we consider the operational
semantics of p.

Initial state. In the initial state of the system both buffers are empty, and no
runs have been created yet. Thus the initial state of the system is given by

s0 = 〈M0, ∅, ∅, ∅〉

where M0 refers to the intruder knowledge, which we define in the next section.

3.4 Initial intruder knowledge

We assume the intruder can create a possibly infinite number of constants, defined
as the set CI . The initial knowledge of the intruder includes this set. We model
untrusted agents by including their initial knowledge in the initial intruder knowl-
edge.

We could choose to define the initial knowledge of the intruder as the static
knowledge of all the roles, for all untrusted agents. However, for some protocols we
require that the untrusted agents cannot play certain roles. It is e.g. undesirable

12

[create]
run = ((rid, ρ, σ), s) ∈ runsof (p), rid 6∈ runids(F)

〈M,BS ,BR, F 〉
create(run)
−−−−−−→ 〈M,BS ,BR, F ∪ {run}〉

[send]
run = (inst, send `(m) · s) ∈ F

〈M,BS ,BR, F 〉
(inst,send`(m))
−−−−−−→ 〈M,BS ∪ {inst(m)},BR, F [(inst, s)/run]〉

[read]
run = (inst, read `(pt) · s) ∈ F, m ∈ BR,Match(inst, pt, m, inst′)

〈M,BS ,BR, F 〉
(inst′,read`(pt))
−−−−−−→ 〈M,BS ,BR \ {m}, F [(inst′, s)/run]〉

[claim]
run = (inst, claim`(r, c [, t]) · s) ∈ F

〈M,BS ,BR, F 〉
(inst,claim`(r,c [,t]))

−−−−−−→ 〈M,BS ,BR, F [(inst, s)/run]〉

Table 2: SOS rules.

that an untrusted agent plays the role of the certificate server that knows the secret
keys of all the agents. We define these roles as the set of trusted roles RT . All
other roles are called the untrusted roles RU . Unless stated otherwise, we assume
RT = ∅, and thus RU = R.

The intruder learns all initial knowledge of a role before it is instantiated in
a specific run. Thus, This excludes any local constants, as well variable names
(because they are not instantiated yet). The initial intruder knowledge will consist
of e.g. the names and public keys of all agents, and the secret keys of the intruder.
The following table shows some examples for the knowledge of a role i ∈ R.

{i} ⊆ MR(i) ⇒ AU ⊆ M0

{r} ⊆ MR(i) ⇒ A ⊆ M0

{pk(r), sk(i)} ⊆ MR(i) ⇒ {pk(a), sk(e) | a ∈ A ∧ e ∈ AU} ⊆ M0

If the i role knowledge contains e.g. sk(i), pk(r), we see that the intruder knowledge
contains sk(e) for each untrusted agent e acting in this role. Untrusted agents are
however able to communicate with trusted agents, and thus pk(a) is in the initial
intruder knowledge for each agent a.

To instantiate the role knowledge, we only need to know how the role names are
mapped to agent names: information about a run or instantiation of the variables
is not needed. For a protocol p, an untrusted agent e in an untrusted role r, the
knowledge that is passed to the intruder is defined as

⋃

ρ∈R→A
ρ(r)=e

{

(, ρ,)t
∣

∣ t ∈ MR(r) ∧ ∀t′vt(t
′ 6∈ V ∪ C)

}

13

For a protocol p, we define the initial intruder knowledge as the union of this
knowledge of all untrusted agents and roles:

M0 = CI ∪
⋃

ρ∈R→A
r∈RU

ρ(r)∈AU

{

(, ρ,)t
∣

∣ t ∈ MR(r) ∧ ∀t′vt(t
′ 6∈ V ∪ C)

}

For example, for the Needham-Schroeder protocol, the initial intruder knowledge
would simply consist of the set CI , the names and public keys of all agents, and the
secret keys of the untrusted agents.

3.5 Network/Intruder rules

In the context of security protocol verification the Dolev-Yao intruder model is
commonplace. In this model, the intruder has complete control over the network.
Messages can be learnt, deflected, and created by such an intruder. However, often
this intruder model is too powerful, for example when an intruder can only eaves-
drop on the network, or in wireless communications. In such cases, it might be
desirable to develop more lightweight protocols that are correct for this weaker in-
truder model. Therefore, we parameterise over the intruder model, which is defined
as a set of capabilities. Each intruder rule defines a capability by explaining the
effect of the intruder action on the output buffer, the input buffer and the intruder
knowledge. In Table 3 we give some examples of intruder rules. The transmit rule
describes transmission of a message from the output buffer to the input buffer with-
out interference from the intruder. If the intruder has eavesdropping capabilities,
as stated in the eavesdrop rule he can learn the message during transmission. The
deflect rule states that an intruder with deflection capabilities can delete any mes-
sage from the output buffer. The difference witht the jam rule is that the intruder
can read the deflected message and add it to its knowledge. The inject rule de-
scribes the injection of any message inferable from the intruder knowledge into the
input buffer.

Next, we define some interesting intruders. In a network without an intruder
we only have the transmit rule, so NoIntruder = {transmit}. In the Dolev-Yao
model the intruder has full control over the network. Every message is read and
analysed, and anything that can be constructed can be inserted into the network,
so DolevYao = {deflect , inject}. A wireless communication network is weaker than
Dolev-Yao, because it does not allow learning from a message and blocking it at
the same time. Thus we define Wireless = {eavesdrop, jam , inject}. If the intruder
can only eavesdrop, we have ReadOnly = {eavesdrop}.

It is possible to construct more intruder rules, for intruder capabilities such as
rerouting of messages or the modification of messages.

3.6 Security properties

Traces. We will discuss some trace based security properties, therefore, we de-
fine the traces generated by the above derivation rules. For α = α0 . . . αn−1 ∈

Transitionlabel ∗ we use s0
α
→ sn to denote ∃s1,...sn−1

s0
α0→ s1 . . . sn−1

αn−1

→ sn. We

use s
α
→ to denote ∃s′s

α
→ s′. The length of a sequence of labels α is denoted by

| α |.

14

[transmit]
m ∈ BS

〈M,BS ,BR, F 〉
transmit(m)

−−−−−−→ 〈M,BS \ {m},BR ∪ {m}, F 〉

[deflect]
m ∈ BS

〈M,BS ,BR, F 〉
deflect(m)
−−−−−−→ 〈M ∪ {m},BS \ {m},BR, F 〉

[inject]
M ` m

〈M,BS ,BR, F 〉
inject(m)
−−−−−−→ 〈M,BS ,BR ∪ {m}, F 〉

[eavesdrop]
m ∈ BS

〈M,BS ,BR, F 〉
eavesdrop(m)
−−−−−−→ 〈M ∪ {m},BS \ {m},BR ∪ {m}, F 〉

[jam]
m ∈ BS

〈M,BS ,BR, F 〉
jam(m)

−−−−−−→ 〈M,BS \ {m},BR, F 〉

Table 3: Network/intruder rules.

The set of traces Tr : ProtSpec → P(Transitionlabel ∗) is defined as {a ∈

Transitionlabel ∗ | s0
a
→}, where s0 is the initial state of the protocol. For trace

α, we use αi to denote the ith action label from α.
We reconstruct state information from a trace as follows. If αi is an action

from trace α, then Mα
i (or simply Mi) is the intruder knowledge right before the

execution of αi.

Secrecy. For t ∈ RoleTerm , we introduce the claim claim `(r, secret , t).
A protocol p is correct with respect to secrecy if the following holds for all traces

α ∈ Tr(p) and i ∈ N .

αi = ((rid, ρ, σ), claim `(r, secret , t)) ∧ rng(ρ) ⊆ AT ⇒

∀i≤j≤|α|(rid, ρ, σ)(t) 6∈ Mα
j

Synchronisation. We define a strong authentication requirement called synchro-
nisation. A thorough description of this form of authentication can be found in
[5]. A synchronisation claim boils down to the requirement that the corresponding
sends and reads of two communicating runs exactly match each other. This prop-
erty resembles the notion of intensional specifications [16] and is stronger than the
well-known agreement property, which can also be described in our framework.

Synchronisation is defined with help of some auxiliary functions and predicates.
The first predicate expresses that for label ` two runs agree on the occurrences of

15

the send` event and the read ` event. We use the function sendrole(`) to denote the
role in which the event send ` occurs. The function readrole(`) is defined likewise.

We define the projection function runidof : Inst → Runid by
runidof (rid, ρ, σ) = rid. For all traces α, k ∈ N , labels ` and run identifiers
rid1, rid2, the single-label synchronisation predicate 1L-SYNCH is given by

1L-SYNCH (α, k, `, rid1, rid2) ⇐⇒
∃i,j∈N ,inst1 ,inst2∈Inst ,m1,m2∈MSG

i < j < k ∧
αi = (inst1, send `(m1)) ∧ runidof (inst1) = rid1 ∧
αj = (inst2, read `(m2)) ∧ runidof (inst2) = rid2 ∧
inst1(m1) = inst2(m2)

This predicate is generalised to sets of labels in the following way. For all traces
α, k ∈ N , label set L, and cast : R → Runid , the multi-label synchronisation
predicate ML-SYNCH is given by

ML-SYNCH (α, k, L, cast) ⇐⇒
∀`∈L 1L-SYNCH

(

α, k, `, cast(sendrole(`)), cast(readrole(`))
)

If ML-SYNCH (α, k, L, cast) holds, we say that the set of labels L has correctly
occurred in a trace α before position k with respect to the instantiation cast .

In order to determine the relevant set of labels which should be checked if a
synchronisation claim occurs, we define the set prec(p, cl). This set contains the
causally preceding communications of a claim role event labeled with cl, for a secu-
rity protocol p and is given by

prec(p, cl) = {` | read `(, ,) ≺ claimcl(,)}

We introduce the claim nisynch ∈ Claim . A protocol p is correct with respect
to NI -SYNCH if the following holds for all traces α ∈ Tr(p).

αi = (rid, ρ, σ, claim `(r,nisynch)) ∧ rng(ρ) ⊆ AT

⇒ ∃cast:R→Runid (cast(r) = rid ∧ ML-SYNCH (α, i, prec(p, `), cast))

4 The Needham-Schroeder(-Lowe) protocol

In this section we will take a closer look at the Needham-Schroeder protocol from
Figure 1 and illustrate our definitions. The protocol goal is to ensure mutual au-
thentication and as a side effect secrecy of the involved nonces. Starting point of
the protocol is a public key infrastructure. This is depicted by the initial knowledge
above each of the roles in the protocol. The initiator starts the protocol by sending
an encrypted initialisation request to the responder. The nonce is used to prevent
play-back attacks. Only the responder is able to unpack this message and replies by
sending the initiator’s nonce together with his own fresh nonce. Then the initiator
proves his identity by replying the responder’s nonce.

The man-in-the-middle attack in Figure 2 only requires two runs. One of trusted
agent a performing the initiator role in a session with untrusted agent m and one
of trusted agent b performing the responder role in a session with agent a. The
intruder impersonates both m and a and in this way uses a as an oracle to unpack

16

message from b. At the end he has fooled b into thinking that he is talking to a,
while he is talking to the intruder.

Knowing this attack, it is straightforward to reconstruct it formally with our se-
mantics. Our experience shows that when trying to prove a flawed protocol correct,
the way in which the proof fails often indicates the attack. Rather than showing
the details here, we will prove correctness of the fixed Needham-Schroeder protocol,
which is called the Needham-Schroeder-Lowe protocol. The protocol is hardened
by extending message 2 with the responder name. It is specified as follows.

nsl(i) = ({i, r, ni, pk(r), pk(i), sk(i)}, nsl(r) = ({i, r, nr, pk(i), pk(r), sk(r)},
send1(i, r, {i, ni}pk(r))· read1(i, r, {i, W}pk(r))·
read 2(r, i, {ni, V, r}pk(i))· send2(r, i, {W, nr, r}pk(i))·
send3(i, r, {V }pk(r)))· read3(i, r, {nr}pk(r)))·
claim4(i, secret , ni)· claim7(r, secret , nr)·
claim5(i, secret , V)· claim8(r, secret , W)·
claim6(i,nisynch)) claim9(r,nisynch))

We assume that there are no trusted roles. For this protocol, the initial intruder
knowledge (cf. Section 3.4) is given by

M0 = CI ∪
⋃

a∈A

{a, pk(a)} ∪
⋃

e∈AU

{sk(e)}

First we introduce some notation and present results which support verification.
We define msgs(p) as the set of all role messages sent in the protocol. The first
lemma helps to infer that secret information which is never transmitted, remains
secret forever.

Lemma 1 Let p be a protocol, i an instantiation and t a basic term. If t is not a
subterm of any message that is ever sent, and i(t) is not a subterm of the initial
intruder knowledge, then i(t) will never be known by the intruder. Formally:

∀t′∈msgs(p)t 6v t′ ∧ ∀m:M0`mi(t) 6v m ⇒ ∀α∈Tr(p),0≤j≤|α|M
α
j 0 i(t)

The correctness of this lemma follows from the SOS-rules.
The next lemma expresses that roles are executed from the beginning to the

end. The predicate e ≺r e′ means that event e precedes event e′ in the specification
of role r.

Lemma 2 Let α be a trace of a protocol, let (rid, ρ, σ) be an instantiation and e′,
e events, such that e′ ≺r e for some role r. If for some i (0 ≤ i <| α |) αi =
(rid, ρ, σ, e) then there exists j (0 ≤ j < i) and σ′ ⊆ σ such that αj = (rid, ρ, σ′, e′).

The correctness of this lemma follows from Table 2 by observing that every run is
“pealed off” from the beginning, while taking into account that the Match predicate
is defined such that it only extends the valuation of the variables.

The next lemma is used to infer from an encrypted message reception that
the message must have been sent by an agent if it contains a component which is
not known to the intruder. In most applications of this lemma we can infer l′ by
inspection of the role specification and we have (rid, ρ, σ)({m}k) = (rid′, ρ′, σ′)(m′),
rather than a subterm relation.

17

Lemma 3 Let α be a trace and let i be an index of α. If αi =
((rid, ρ, σ), read `(x, y, {m}k)) and M0 0 (rid, ρ, σ)({m}k) , and Mα

i 0 (rid, ρ, σ)(m),
then there exists index j < i such that αj = (rid′, ρ′, σ′, send `′(x

′, y′, m′)) and
(rid, ρ, σ)({m}k) v (rid′, ρ′, σ′)(m′).

The correctness of this lemma follows from the fact that if the intruder does not
know m when the message containing {m}k is read, he could not have constructed
the encryption. Thus, it must have been sent as a subterm earlier.

The final lemma is characteristic for our model. It expresses that when two
instantiations of a constant (such as a nonce or session key) are equal, they were
created in the same run.

Lemma 4 Let (rid, ρ, σ) and (rid′, ρ′, σ′) be instantiations, and let n ∈ C. If
(rid, ρ, σ)(n) = (rid′, ρ′, σ′)(n) we have rid = rid′.

Theorem 1 The Needham-Schroeder-Lowe protocol is correct in the Dolev-Yao in-
truder model with conspiring agents and without type flaws.

Proof. We will sketch the proofs for claim7 and claim9. The other claims are
proven analogously.

First observe that the intruder will never learn secret keys of trusted agents. This
follows directly from Lemma 1, since none of the messages contain an encryption
key in the message text. Since the set of keys known to the intruder is constant, it
must be the case that if the intruder learns a basic term he learns it from unpacking
an intercepted message which was encrypted with the key of an untrusted agent.

Proof outline We construct proofs for the Needham-Schroeder-Lowe protocol.
The proof construction would fail for the Needham-Schroeder protocol, and we will
use a marker † to indicate where the difference occurs. After the proof of claim 7,
we briefly discuss this difference.

Both proofs will roughly follow the same structure. We examine the occurrence
of a claim event in a trace of the system. Based on the rules of the semantics, we
gradually derive more information about the trace, until we can conclude that the
required property holds.

Proof of claim7. In order to prove claim7 we assume that α is a trace with in-
dex r7, such that αr7 = ((ridr7, ρr7, σr7), claim7(r, secret , nr)) and rng(ρr7) ⊆
AT . Now we assume that the intruder learns nr and we will derive a contradic-
tion. Let k be the smallest index such that (ridr7, ρr7, σr7)(nr) ∈ Mk+1, and
thus (ridr7, ρr7, σr7)(nr) 6∈ Mk. Inspection of the derivation rules learns that this
increase in knowledge is due to an application of the send rule, followed by an ap-
plication of the deflect rule. Therefore, there must be a smallest index p < k such
that αp = ((rid′, ρ′, σ′), send `(m)) and (ridr7, ρr7, σr7)(nr) v (rid′, ρ′, σ′)(m).
Since we have three possible send events in the NSL protocol, we have three cases:
` = 1, 2, or 3.

[` = 1] In the first case we have αp = ((rid′, ρ′, σ′), send1(i, r, {i, ni}pk(r))). Since
constants i and ni both differ from nr, the intruder cannot learn
(ridr7, ρr7, σr7)(nr) from (rid′, ρ′, σ′)(i, r, {i, ni}pk(r)), which yields a contradiction.

[` = 2] In the second case αp = ((rid′, ρ′, σ′), send2(r, i, {W, nr, r}pk(i))). The
intruder can learn nr because ρ′(i) is an untrusted agent and either

18

(ridr7, ρr7, σr7)(nr) = (rid′, ρ′, σ′)(W) or (ridr7, ρr7, σr7)(nr) = (rid′, ρ′, σ′)(nr).
We discuss both options separately.

(i) For the former equality we derive that (rid′, ρ′, σ′)(W) 6∈ Mp, so we can apply
Lemmas 2 and 3 to find i1 with αi1 = ((ridi1, ρi1, σi1), send1(i, r, {i, ni}pk(r))) .
This gives (ridi1, ρi1, σi1)(ni) = (rid′, ρ′, σ′)(W) = (ridr7, ρr7, σr7)(nr), which can-
not be the case since ni and nr are distinct constants.

(ii) That the latter equality yields a contradiction is easy to show. Using
Lemma 4 we derive ridr7 = rid′ and since run identifiers are unique, we have
ρr7 = ρ′. So ρr7(i) = ρ′(i), which contradicts the assumption that ρr7(i) is a
trusted agent.

[` = 3] In the third case we have αp = ((rid′, ρ′, σ′), send3(i, r, {V }pk(r))). In or-
der to learn (ridr7, ρr7, σr7)(nr) from (rid′, ρ′, σ′)(i, r, {V }pk(r)) we must have that
(rid′, ρ′, σ′)(V) = (ridr7, ρr7, σr7)(nr) and that ρ′(r) is an untrusted agent. Using
Lemma 2 we find index i2 such that αi2 = ((rid′, ρ′, σ′), read2(r, i, {ni, V, r}pk(i)) .
Because (rid′, ρ′, σ′)(V) 6∈ Mp we can apply Lemma 3 to find index r2 with αr2 =
((ridr2, ρr2, σr2), send2(r, i, {W, nr, r}pk(i)). This gives ρ′(r) = ρr2(r). (†)

Next, we derive (ridr2, ρr2, σr2)(nr) = (rid′, ρ′, σ′)(V) = (ridr7, ρr7, σr7)(nr).
Applying Lemma 4 yields ridr2 = ridr7 and thus ρr2 = ρr7, so ρ′(r) = ρr2(r) =
ρr7(r). Because ρ′(r) is an untrusted agent while ρr7(r) is trusted, we obtain a
contradiction. This finishes the proof of claim7.

Note †: Please notice that the step in the proof marked with † fails for the
Needham-Schroeder protocol, which gives an indication of why the hardening of
the second message exchange is required.

Proof of claim9. Let α ∈ Tr(nsl) be a trace of the system. Suppose that for
some r9 and (ridr , ρr, σr9) ∈ Inst , with rng(ρr) ⊆ AT , we have
αr9 = ((ridr , ρr, σr9), claim9(r,nisynch)) . In order to prove this synchronisa-

tion claim correct, we must find a run executing the initiator role which synchro-
nises on the events labeled 1, 2, and 3, since prec(nsl, 9) = {1, 2, 3}. By applying
Lemma 2, we find r1, r2, r3 (0 ≤ r1 < r2 < r3 < r9) and σr1 ⊆ σr2 ⊆ σr3 ⊆ σr9,
such that

αr1 = ((ridr, ρr, σr1), read 1(i, r, {i, W}pk(r)))
αr2 = ((ridr, ρr, σr2), send2(r, i, {W, nr, r}pk(i)))
αr3 = ((ridr, ρr, σr3), read 3(i, r, {nr}pk(r))).

We have already proved that nr remains secret, so we can apply Lemma 3 and
find index i3 and (ridi, ρi, σi3) such that i3 < r3 and
αi3 = ((ridi, ρi, σi3), send3(i, r, {V }pk(r))) ∧ (ridr , ρr, σr3)(nr) = (ridi, ρi, σi3(V).
By applying Lemma 2 we obtain i1 < i2 < i3 such that

αi1 = ((ridi, ρi, σi1), send1(i, r, {i, ni}pk(r)))
αi2 = ((ridi, ρi, σi2), read2(r, i, {ni, V, r}pk(i)))
αi3 = ((ridi, ρi, σi3), send3(i, r, {V }pk(r))).

Now that we have found out that run ridi is a candidate, we only have to prove
that it synchronises with run ridr . Therefore, we have to establish r2 < i2, i1 < r1
and that the corresponding send and read events match each other.

First, we observe αi2. Since (ridr , ρr, σr3)(nr) is secret, (ridi, ρi, σi2)(V) is se-
cret too and we can apply Lemma 3, obtaining index r2′ < i2 such that αr2′ =

19

((ridr′ , ρr′ , σr2′), send2(r, i, {W, nr, r}pk(i)))
such that we have (ridi, ρi, σi2)({ni, V, r}pk(i)) = (ridr′ , ρr′ , σr2′)({W, nr, r}pk(i)).
This implies that we have (ridr, ρr, σr3)(nr) = (ridi, ρi, σi3(V) = (ridr′ , ρr′ , σr2′)(nr),
so from Lemma 4 we have ridr = ridr′ , and thus r2 = r2′. This establishes syn-
chronisation of events αi2 and αr2.

Next, we look at αr1. Because (ridr, ρr, σr1)(W) is secret (cf. claim 8), we can
apply Lemma 3, which gives index i1′ < r1 such that
αi1′ = ((ridi′ , ρi′ , σi1′), send1(i, r, {i, ni}pk(r))) and (ridr , ρr, σr1)({i, W}pk(r))) =
(ridi′ , ρi′ , σi1′)({i, ni}pk(r)). Correspondence of αi2 and αr2 gives
(ridi, ρi, σi2)(ni) = (ridr , ρr, σr2)(W) = (ridr , ρr, σr1)(W) = (ridi′ , ρi′ , σi1′)(ni).
By lemma 4 ridi and ridi′ are equal, which establishes synchronisation of events
αr1 and αi1. This finishes the synchronisation proof of claim9.

�

5 Related work

There is a wealth of different approaches for the modeling of security protocols. Very
often the focus is on verification tools, yielding a model which is only informally or
implicitly defined.

We will briefly compare our approach to the three prominent approaches: BAN
logic (because of its historic interest), Casper/FDR (because it has powerful tool
support), and Strand spaces (because this approach has much in common with
ours). We conclude with short remarks on the spi calculus and modeling security
protocols as open systems.

In 1989 Burrows, Abadi and Needham published their ground breaking work
on a logic for the verification of authentication properties [3]. In this so-called
BAN-logic, predicates have the form “P believes X”. Such predicates are derived
from a set of assumptions, using derivation rules like “If P believes that P and
Q share key K, and if P sees message {X}K then P believes that Q once said
X”. Note that this rule implies a peculiarity of the agent model, which is not
required in most other approaches, viz. an agent can detect (and ignore) his own
messages. The BAN-logic has a fixed intruder model, which does not consider
conspiring agents. The Needham-Schroeder protocol (see Figure 1) was proven
correct in BAN-logic because the man-in-the-middle attack from Figure 2 could
not be modeled. Another major difference with our approach is that the BAN-
logic uses a rather weak notion of authentication. The authentication properties
verified for most protocols have the form “A believes that A and B share key K”
(or “. . . share secret X”), and “A believes that B believes that A and B share key
K”. This weak form of agreement is sometimes even further reduced to recent
aliveness. Furthermore, type-flaw attacks cannot be detected using BAN-logic. An
interesting feature is that BAN logic treats time stamps at an appropriate abstract
level, while an extension of our semantics with time stamps is not obvious. Due
to the above mentioned restrictions interest in BAN logic has decreased. Recent
research concerns its extension and the development of models for the logic.

Developed originally by Gavin Lowe, the Casper/FDR tool set as described in [9]
is not a formal security protocol semantics, but a model checking tool. However,
as the input is translated into a CSP process algebraic model, there is an implicit
semantics. The reason we mention it here, is that Casper/FDR is a mature tool set,

20

and none of the other semantics we mention has such a tool set available. In the
research for Casper/FDR many interesting security properties have been formulated
in terms of CSP models (see e.g. [10]) and some of these have been consequently
adapted in other models. An advantage of using process algebra for modeling
security protocols is that the model is easily extended. However, for Casper/FDR
there is no explicit formal semantics of the protocol language and properties except
in terms of CSP. Because of this, it is difficult to get results about properties besides
using the tools.

The Strand space approach [17] is closely related to the use of Message Se-
quence Charts which we advocate for the description of protocols and protocol
runs. Roughly, the difference is that we provide a totally ordered semantics, whereas
Strand spaces describe a partial order on the events. The notion of a strand is simi-
lar to our notion of run, and a strand space is the set of all possible combinations of
strands, reflecting our semantical model of interleaved runs. Strand spaces seem to
be very tightly linked to the Dolev-Yao intruder model and although the intruder is
modeled as a collection of strands, just like normal agents, it is not easy to vary over
the intruder network model. With respect to the security properties, we mention
that both secrecy and agreement are expressible in the Strand spaces model. Ad-
ditional research must indicate whether synchronisation can be expressed. Finally,
we mention that our focus on security claims which are local to the agent’s run is
not reflected in Strand spaces.

As an example of a process calculus approach, we have the spi calculus developed
by Abadi and Gordon in [1]. It is an extension of the pi calculus in [13]. Although
this has advantages, it also inherits properties of the pi calculus that do not imme-
diately seem useful for security protocol analysis. As an example, expressing that a
run is synchronising with another run over multiple messages is non-trivial, because
it can be hard to tell two runs of the same role (with identical parameters) apart.
To always be able to distinguish two runs, additional constructs are needed as in [2].
Having an explicit run identifier in the semantics makes it easier to express such
properties.

Recently, Martinelli has proposed to analyse security protocols as open systems
in [11]. A process calculus for security protocols is proposed, where the intruder
process is left unspecified. This allows for protocol properties to be checked with
respect to any intruder, which (for safety properties) amounts to the Dolev-Yao
intruder model. Properties can also be checked or with respect to a specific intruder,
which is similar to having different intruder rules in our semantics. Two main
drawbacks are that the analysis assumes a finite number of agents and runs, and
that it cannot be used to find type flaw attacks.

In the methods mentioned here, the construction of the initial intruder knowl-
edge is left implicit.

6 Conclusions and future research

We have developed a generic canonical model for fundamental analysis of security
protocols. Some characteristics of this model are that we give explicit static re-
quirements for valid protocols, and that the model is parametric with respect to the
matching function and intruder network capabilities. Multi-protocol analysis, by
which we mean the analysis of running several different protocols or protocol roles
concurrently, is handled in an intuitive way by simply adding more role descriptions

21

to the model. In line with this, security properties are defined as local claims. Fur-
thermore, local constants are bound to runs, which can assist in the construction
of proofs.

As future work, we will be formulating metaresults. For instance, we are in-
terested in results about the composition of protocols, and the decomposition of
problems into simpler components. Related to this are transformations of protocols
in a given intruder model such that the same security properties are met.

Results in composition of protocols can lead to security by construction. Given
a set of security properties and an intruder model, we would like to construct a
correct protocol.

We have already developed a tool for model checking secrecy based on this
model [4]. Future work will be to develop this into a mature toolset. Parallel to
this we are investigating state space reduction techniques for certain settings in our
model, such as only eavesdropping, and specific properties.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi
calculus. Inf. Comput., 148(1):1–70, 1999.

[2] C. Bodei, P. Degano, R. Focardi, and C. Priami. Primitives for authentication
in process algebras. Theor. Comput. Sci., 283(2):271–304, 2002.

[3] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM
Transactions on Computer Systems, 8:18–36, 1990.

[4] C.J.F. Cremers and S. Mauw. Checking secrecy by means of partial order reduc-
tion. In D. Amyot and A.W. Williams, editors, SAM 2004: Security Analysis
and Modelling, volume LNCS 3319 of Proceedings of the fourth SDL and MSC
Workshop, pages 177–194, Ottawa, Canada, September 2004. Springer-Verlag,
Berlin.

[5] C.J.F. Cremers, S. Mauw, and E.P. de Vink. Defining authentication in a
trace model. In Theo Dimitrakos and Fabio Martinelli, editors, FAST 2003,
Proceedings of the first international Workshop on Formal Aspects in Security
and Trust, pages 131–145, Pisa, September 2003. IITT-CNR technical report.

[6] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Trans-
actions on Information Theory, IT-29(12):198–208, March 1983.

[7] A. G. Engels, S. Mauw, and M.A. Reniers. A hierarchy of communication
models for Message Sequence Charts. Science of Computer Programming,
44(3):253–292, September 2002.

[8] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Proceedings of TACAS, volume 1055, pages 147–166. Springer Verlag,
1996.

[9] G. Lowe. Casper: A compiler for the analysis of security protocols. In Proc.
10th Computer Security Foundations Workshop, pages 18–30. IEEE, 1997.

22

[10] G. Lowe. A hierarchy of authentication specifications. In Proc. 10th Computer
Security Foundations Workshop, pages 31–44. IEEE, 1997.

[11] F. Martinelli. Analysis of security protocols as open systems. Theor. Comput.
Sci., 290(1):1057–1106, 2003.

[12] S. Mauw, W.T. Wiersma, and T.A.C. Willemse. Language-driven system de-
sign. International Journal of Software Engineering and Knowledge Engineer-
ing, 2004. To appear.

[13] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses, i. Inf. Comput., 100(1):1–40, 1992.

[14] Roger M. Needham and Michael D. Schroeder. Using encryption for authenti-
cation in large networks of computers. Commun. ACM, 21(12):993–999, 1978.

[15] G.D. Plotkin. A structural approach to operational semantics. Technical Re-
port DIAMI FN-19, Computer Science Department, Aarhus University, 1981.

[16] A. W. Roscoe. Intensional Specifications of Security Protocols. In Proc. 9th
Computer Security Foundations Workshop, pages 28–38. IEEE, 1996.

[17] F.J. Thayer Fábrega, J.C. Herzog, and J.D. Guttman. Strand spaces: Why is
a security protocol correct? In Proc. 1998 IEEE Symposium on Security and
Privacy, pages 66–77, Oakland, California, 1998.

23

