Skip to main content

A General Framework of Targeted Marketing

  • Conference paper
Advances in Web Intelligence (AWIC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3528))

Included in the following conference series:

  • 1016 Accesses

Abstract

In this paper, inspired by a unified probabilistic model of information retrieval, we propose a general framework of targeted marketing by considering three types of information, namely, the customer profiles, the product profiles, and the transaction databases. The notion of market value functions is introduced, which measure the potential value or profit of marketing a product to a customer. Four sub-models are examined for the estimation of a market value function. Based on market value functions, two targeted marketing strategies, namely, customer-oriented targeted marketing and product-oriented targeted marketing, are suggested. This paper focuses on the conceptual development of the framework. The detailed computation of a market value function and the evaluation of the proposed framework will be reported in another paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Associates, D.S.: The New Direct Marketing. McGraw-Hill, New York (1999)

    Google Scholar 

  2. Breese, J., Hecherman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proc. the 14th Conference on Uncertainty in Artificial Intelligence (UAI 1998), pp. 43–52 (1998)

    Google Scholar 

  3. Balabanovic, M., Shoham, Y.: Fab: Content-based, Collaborative Recommendation. Communications of the ACM 40, 66–72 (1997)

    Article  Google Scholar 

  4. Han, J.W., Kamber, M.: Data Mining Concepts and Techniques. Higher Education Press and Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  5. Pazzani, M.J.: A Framework for Collaborative, Content-based and Demograhic Filtering. Artificial Intelligence Review 13(5-6), 393–408 (1999)

    Article  Google Scholar 

  6. Robertson, S.E., Maron, M.E., Cooper, W.S.: Probability of Relevance: A Unification of Two Competing Models for Document Retrieval. Information Technology: Research and Development 1, 1–21 (1982)

    Google Scholar 

  7. Yao, Y.Y., Zhong, N., Huang, J., Ou, C., Liu, C.: Using Market Value Functions for Targeted Marketing Data Mining. International Journal of Pattern Recognition and Artificial Intelligence 16(8), 1117–1131 (2002)

    Article  Google Scholar 

  8. Yao, Y.Y., Zhao, Y., Maguire, R.B.: Explanation Oriented Association Mining Using Rough Set Theory. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 165–172. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Zhong, N.: Towards Web Intelligence. In: Menasalvas, E., Segovia, J., Szczepaniak, P.S. (eds.) AWIC 2003. LNCS (LNAI), vol. 2663, pp. 1–14. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Zhong, N., Yao, Y.Y., Liu, C., Huang, J., Ou, C.: Data Mining for Targeted Marketing. In: Zhong, N., Liu, J. (eds.) Intelligent Technologies for Information Analysis, pp. 109–134. Springer, Heidelberg (2004)

    Google Scholar 

  11. Zhong, N., Liu, J., Yao, Y.Y. (eds.): Web Intelligence. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  12. http://www.movielens.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, J., Zhong, N., Yao, Y.Y., Liu, C. (2005). A General Framework of Targeted Marketing. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds) Advances in Web Intelligence. AWIC 2005. Lecture Notes in Computer Science(), vol 3528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11495772_31

Download citation

  • DOI: https://doi.org/10.1007/11495772_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26219-0

  • Online ISBN: 978-3-540-31900-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics