Skip to main content

On the Security Models of (Threshold) Ring Signature Schemes

  • Conference paper
Information Security and Cryptology – ICISC 2004 (ICISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3506))

Included in the following conference series:

  • 1303 Accesses

Abstract

We make fine-grained distinctions on the security models for provably secure ring signature schemes. Currently there are two commonly used security models which are specified by Rivest et al. [1] and Abe et al. [1]. They offer different levels of security. In this paper, we introduce a new but compatible model whose security level can be considered to be lying in between these two commonly used models. It is important to make fine-grained distinctions on the security models because some schemes may be secure in some of the models but not in the others. In particular, we show that the bilinear map based ring signature scheme of Boneh et al. [4], which have been proven secure in the weakest model (the one specified by Rivest et al. [15]), is actually insecure in stronger models (the new model specified by us in this paper and the one specified by Abe et al. [1]). We also propose a secure modification of their scheme for each of the two stronger models. In addition, we propose a threshold ring signature scheme using bilinear maps and show its security against adaptive adversaries in the strongest model defined in this paper. Throughout the paper, we carry out all of the security analyses under the random oracle assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proc. 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)

    Chapter  Google Scholar 

  4. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

    Google Scholar 

  8. Chaum, D., Van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

    Google Scholar 

  9. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  10. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad-hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, Springer, Heidelberg (2004)

    Google Scholar 

  11. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attack. SIAM J. Computing 17(2), 281–308 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable and anonymous signature for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Liu, J.K., Wei, V.K., Wong, D.S.: A separable threshold ring signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 12–26. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–369. Springer, Heidelberg (1998)

    Google Scholar 

  15. Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Wong, D., Fung, K., Liu, J., Wei, V.: On the RS-code construction of ring signature schemes and a threshold setting of RST. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 34–46. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Zhang, F., Kim, K.: ID-Based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, J.K., Wong, D.S. (2005). On the Security Models of (Threshold) Ring Signature Schemes. In: Park, Cs., Chee, S. (eds) Information Security and Cryptology – ICISC 2004. ICISC 2004. Lecture Notes in Computer Science, vol 3506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496618_16

Download citation

  • DOI: https://doi.org/10.1007/11496618_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26226-8

  • Online ISBN: 978-3-540-32083-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics