Skip to main content

Abstract

We consider a process during which encoded messages are processed through a network; at one step a message can be delivered only to a neighbor of the current node; at each node a message is recoded cryptographically so that an external observer cannot link the messages before and after re-coding. The goal of re-coding is to hide origins of the messages from an adversary who monitors the traffic. Recoding becomes useful, if at least two messages simultaneously enter a node – then the node works like a mix server.

We investigate how long the route of messages must be so that traffic analysis does not provide any substantial information for the adversary. Anonymity model we consider is very strong and concerns distance between a priori probability distribution describing origins of each message, and the same probability distribution but conditioned upon the traffic information. We provide a rigid mathematical proof that for a certain route length, expressed in terms of mixing time of the network graph, variation distance between the probability distributions mentioned above is small with high probability (over possible traffic patterns).

While the process concerned is expressed in quite general terms, it provides tools for proving privacy and anonymity features of many protocols. For instance, our analysis extends results concerning security of an anonymous communication protocol based on onion encoding – we do not assume, as it is done in previous papers, that a message can be sent directly between arbitrary nodes. However, the most significant application now might be proving immunity against traffic analysis of RFID tags with universal re-encryption performed for privacy protection.

Partially supported by KBN grants 0 T00A 003 23 and 1 P03A 025 27 in years 2002-2004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs in preparation, some chapters, available at http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html

  2. Beimel, A., Dolev, S.: Buses for Anonymous Message Delivery. In: Second International Conference on FUN with Algorithms, pp. 1–13. Carleton Scientific (2001)

    Google Scholar 

  3. Berman, R., Fiat, A., Ta-Shma, A.: Provable Unlinkability Against Traffic Analysis. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 266–280. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Bubley, B., Dyer, M.: Path Coupling: A Technique for Proving Rapid Mixing in Markov Chains. In: IEEE Symposium on Foundations of Computer Science (FOCS) 1997, pp. 223-231 (1997)

    Google Scholar 

  5. Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Communication of the ACM 24(2), 84–88 (1981)

    Article  Google Scholar 

  6. Czumaj, A., Kutyłowski, M.: Generating Random Permutations and Delayed Path Coupling Method for Mixing Time of Markov Chains. Random Structures and Algorithms 17, 238–259 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Czumaj, A., Kanarek, P., Kutyłowski, M., Loryś, K.: Distributed Stochastic Processes for Generating Random Permutations. In: ACM-SIAM Symposium on Discrete Algorithms (SODA) 1999, pp. 271–280 (1999)

    Google Scholar 

  8. Danezis, G., Serjantov, A.: Towards an Information Theoretic Metric for Anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Dingledine, R., Shmatikov, V., Syverson, P.: Synchronous Batching: From Cascades to Free Routes. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 186–206. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Fairbrother, P.: An improved construction for universal re-encryption. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 79–87. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Gogolewski, M., Kutyłowski, M.: Łuczak, T.: Distributed Time-Stamping with Boomerang Onions. Manuscript (2004)

    Google Scholar 

  12. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal Re-encryption for Mixnets. In: RSACT 2004 (2004)

    Google Scholar 

  13. Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.: Provable unlinkability against traffic analysis already after \(\mathcal{O}(\log(n))\) steps! In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 354–366. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Gülcü, C., Tsudik, G.: Mixing E-mail with BABEL. In: ISOC Symposium on Network and Distributed System Security, pp. 2-16. IEEE, Los Alamitos(1996)

    Google Scholar 

  15. Rackoff, C., Simon, D.R.: Cryptographic Defense Against Traffic Analysis. In: ACM Symposium on Theory of Computing (STOC) 1993, 672–681 (1993)

    Google Scholar 

  16. Szemerédi, E.: Regular Partitions of Graphs. In: Bermond, J.-C., Fournier, J.-C., Las Vergnas, M., Sotteau, D. (eds.) Problèmes Combinatoires et Théorie des Graphes, Proc. Colloque Inter. CNRS, Paris, pp. 399–401 (1978)

    Google Scholar 

  17. Syverson, P.F., Goldschlag, D., Reed, M.: Hiding Routing Information. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gogolewski, M., Kutyłowski, M., Łuczak, T. (2005). Mobile Mixing. In: Park, Cs., Chee, S. (eds) Information Security and Cryptology – ICISC 2004. ICISC 2004. Lecture Notes in Computer Science, vol 3506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496618_28

Download citation

  • DOI: https://doi.org/10.1007/11496618_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26226-8

  • Online ISBN: 978-3-540-32083-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics