Skip to main content

A Probabilistic Logic-based Framework for Characterizing Knowledge Discovery in Databases

  • Chapter
  • First Online:
Foundations of Data Mining and knowledge Discovery

Part of the book series: Studies in Computational Intelligence ((SCI,volume 6))

  • 301 Accesses

Abstract

In order to further improve the KDD process in terms of both the degree of automation achieved and types of knowledge discovered, we argue that a formal logical foundation is needed and suggest that Bacchus’ probability logic is a good choice. By completely staying within the expressiveness of Bacchus’ probability logic language, we give formal definitions of “pattern” as well as its determiners, which are “previously unknown” and “potentially useful”. These definitions provide a sound foundation to overcome several deficiencies of current KDD systems with respect to novelty and usefulness judgment. Furthermore, based on this logic, we propose a logic induction operator that defines a standard process through which all the potentially useful patterns embedded in the given data can be discovered. Hence, general knowledge discovery (independent of any application) is defined to be any process functionally equivalent to the process specified by this logic induction operator with respect to the given data. By customizing the parameters and providing more constraints, users can guide the knowledge discovery process to obtain a specific subset of all previously unknown and potentially useful patterns, in order to satisfy their current needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Tsau Young Lin Setsuo Ohsuga Churn-Jung Liau Xiaohua Hu Shusaku Tsumoto

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Xie, Y., V. Raghavan, V. A Probabilistic Logic-based Framework for Characterizing Knowledge Discovery in Databases. In: Young Lin, T., Ohsuga, S., Liau, CJ., Hu, X., Tsumoto, S. (eds) Foundations of Data Mining and knowledge Discovery. Studies in Computational Intelligence, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11498186_5

Download citation

  • DOI: https://doi.org/10.1007/11498186_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26257-2

  • Online ISBN: 978-3-540-32408-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics