Skip to main content

Speedup Techniques Utilized in Modern SAT Solvers

An Analysis in the MIRA Environment

  • Conference paper
Theory and Applications of Satisfiability Testing (SAT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3569))

Abstract

This paper describes and compares features and techniques modern SAT solvers utilize to maximize performance. Here we focus on: Implication Queue Sorting (IQS) combined with Early Conflict Detection Based BCP (ECDB); and a modified decision heuristic based on the combination of Variable State Independent Decaying Sum (VSIDS), Berkmin, and Siege’s Variable Move to Front (VMTF). These features were implemented and compared within the framework of the MIRA SAT solver. The efficient implementation and analysis of these features are presented and the speedup and robustness each feature provides is demonstrated. Finally, with everything enabled (ECDB with IQS and advanced decision heuristics), MIRA was able to consistently outperform zChaff and even Forklift on the benchmarks provided, solving 37 out of 111 industrial benchmarks compared to zChaff’s 21 and Forklift’s 28.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: Proceedings of the 38th DAC (July 2001)

    Google Scholar 

  2. Goldberg, E., Novikov, Y.: BerkMin: a Fast and Robust Sat-Solver. In: DATE 2002, Paris, France, March 2002, pp. 142–149 (2002)

    Google Scholar 

  3. Lawrence, R.: Efficient Algorithms for Clause-Learning SAT Solvers. Master’s thesis, Simon Fraser University (February 2004)

    Google Scholar 

  4. Lewis, M., Schubert, T., Becker, B.: Early Conflict Detection Based BCP for SAT Solving. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542. Springer, Heidelberg (2005)

    Google Scholar 

  5. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal of the ACM 7(3), 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  6. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem-Proving. Communications of the ACM 5, 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  7. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Transactions on Computers 48, 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  8. Fu, Z., Mahajan, Y., Malik, S.: New Features of the SAT 2004 Version of zChaff. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542. Springer, Heidelberg (2005)

    Google Scholar 

  9. Biere, A.: The Evolution from Limmat to Nanosat. Technical Report 444, Dept. of Computer Science, ETH Zürich (2004)

    Google Scholar 

  10. Biere, A.: Limmat Solver, http://www.inf.ethz.ch/personal/biere/projects/limmat/

  11. Van Gelder, A.: Generalizations of Watched Literals for Backtracking Search (2001)

    Google Scholar 

  12. Nadel, A.: The Jerusat SAT Solver. Master’s thesis, Hebrew University of Jerusalem (2002)

    Google Scholar 

  13. Lynce, I., Marques-Silva, J.P.: Efficient Data Structures for Fast SAT Solvers (2001)

    Google Scholar 

  14. Alfredsson, J.: The SAT Solver Oepir. In: SAT 2004 Competition: Solver Descriptions (2004)

    Google Scholar 

  15. Eén, N.: Satzoo, http://www.cs.chalmers.se/~een/Satzoo/

  16. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. SAT 2004, http://www.satlive.org

  18. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient Conflict Driven Learning in a Boolean Satisfiability Solver. In: ICCAD 2001 (2001)

    Google Scholar 

  19. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic Restart Policies. In: The Eighteenth National Conference on Artificial Intelligence (2002)

    Google Scholar 

  20. Goldberg, E., Novikov, Y.: http://eigold.tripod.com/BerkMin.html

  21. Zhang, L., Malik, S.: Cache Performance of SAT Solvers: A Case Study for Efficient Implementation of Algorithms. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 287–298. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lewis, M.D.T., Schubert, T., Becker, B.W. (2005). Speedup Techniques Utilized in Modern SAT Solvers. In: Bacchus, F., Walsh, T. (eds) Theory and Applications of Satisfiability Testing. SAT 2005. Lecture Notes in Computer Science, vol 3569. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499107_36

Download citation

  • DOI: https://doi.org/10.1007/11499107_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26276-3

  • Online ISBN: 978-3-540-31679-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics