Skip to main content

Preserving the Independence of Flows in General Topologies Using Turn-Prohibition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 3552))

Abstract

Various elegant and powerful theories for network performance evaluation have to assume independence to be efficient. While traffic sources are often supposed to be independent, the implications of this assumption regarding flows in arbitrary networks are largely unknown. Recently, turn-prohibition was proposed to solve a related problem concerning feed-forward networks.

In this paper we extend the concept of turn-prohibition to address the issue of independence of flows in general topologies. To this end we evolve an algorithm which derives a set of critical turns that provide full connectivity while conserving the independence of flows up to multiplexing points. In an iterative procedure further turns are added to improve connectivity. The developed algorithm is proven and exemplified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture for Differentiated Services. RFC 2475 (1998)

    Google Scholar 

  2. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications. Wiley, Chichester (1998)

    MATH  Google Scholar 

  3. Boorstyn, R.-R., Burchard, A., Liebeherr, J., Oottamakorn, C.: Statistical Service Assurances for Traffic Scheduling Algorithms. IEEE JSAC 18(12), 2651–2664 (2000)

    Google Scholar 

  4. Chang, C.-S.: Performance Guarantees in Communication Networks. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  5. Duato, J., Yalamanchili, S., Lionel, N.: Interconnection Networks: An Engineering Approach. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  6. Fidler, M.: Elements of Probabilistic Network Calculus Applying Moment Generating Functions. Preprint Series of the Institut Mittag-Leffler, Sweden (2005)

    Google Scholar 

  7. Fidler, M., Einhoff, G.: Routing in turn-prohibition based feed-forward networks. In: Mitrou, N.M., Kontovasilis, K., Rouskas, G.N., Iliadis, I., Merakos, L. (eds.) NETWORKING 2004. LNCS, vol. 3042, pp. 1168–1179. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Haverkort, B.R.: Performance of Computer Communication Systems: A Model-Based Approach. Wiley, Chichester (1999)

    Google Scholar 

  9. Heckmann, O., Piringer, M., Steinmetz, R.: On Realistic Network Topologies for Simulation. In: Proceedings of the ACM Sigcomm Workshops, pp. 28–32 (2003)

    Google Scholar 

  10. Hoffmann, G.: G-WiN - the Gbit/s infrastructure for the German scientific community 34(6), 959–964. Elsevier Computer Networks (2000)

    Google Scholar 

  11. Kelly, F.: Notes on Effective Bandwidths. Stochastic Networks: Theory and Applications. Royal Statistical Society Lecture Notes Series 4, 141–168 (1996)

    Google Scholar 

  12. Le Boudec, J.-Y., Thiran, P.: Network Calculus: A Theory of Deterministic Queueing Systems for the Internet. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  13. Liebeherr, J., Patek, S.D., Burchard, A.: Statistical Per-Flow Service Bounds in a Network with Aggregate Provisioning. In: Proceedings of IEEE Infocom (2003)

    Google Scholar 

  14. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Label Switching Architecture. RFC 3031 (2001)

    Google Scholar 

  15. Schroeder, M.D., Birrell, A.D., Burrows, M., Murray, H., Needham, R.M., Rodeheffer, T.L.: Autonet: A High-speed, Self-configuring Local Area Network Using Point-to-point Links. IEEE JSAC 9(8), 1318–1335 (1991)

    Google Scholar 

  16. Starobinski, D., Karpovsky, M., Zakrevski, L.: Application of Network Calculus to General Topologies using Turn-Prohibition. IEEE/ACM ToN 11(3), 411–421 (2003)

    Article  Google Scholar 

  17. Starobinski, D., Sidi, M.: Stochastically Bounded Burstiness for Communication Networks. IEEE TIT 46(1), 206–216 (2000)

    MATH  MathSciNet  Google Scholar 

  18. Wischik, D.: The output of a switch, or, effective bandwidths for networks. Queueing Systems 32(4), 383–396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yin, Q., Jiang, Y., Jiang, S., Kong, P.Y.: Analysis of Generalized Stochastically Bounded Bursty Traffic for Communication Networks. In: Proceedings of IEEE LCN, pp. 141–149 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fidler, M., Heckmann, O., Steinmetz, R. (2005). Preserving the Independence of Flows in General Topologies Using Turn-Prohibition. In: de Meer, H., Bhatti, N. (eds) Quality of Service – IWQoS 2005. IWQoS 2005. Lecture Notes in Computer Science, vol 3552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499169_16

Download citation

  • DOI: https://doi.org/10.1007/11499169_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26294-7

  • Online ISBN: 978-3-540-31659-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics