Skip to main content

Evaluation of Neuronal Firing Densities via Simulation of a Jump-Diffusion Process

  • Conference paper
Mechanisms, Symbols, and Models Underlying Cognition (IWINAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3561))

  • 611 Accesses

Abstract

We consider a stochastic neuronal model in which the time evolution of the membrane potential is described by a Wiener process perturbed by random jumps driven by a counting process. We consider the first-crossing-time problem through a constant boundary for such a process, in order to describe the firing activity of the model neuron. We build up a new simulation procedure for the construction of firing densities estimates.

This work has been performed under partial support by MIUR (PRIN 2003) and by G.N.C.S. (INdAM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abundo, M.: On First-passage times for one-dimensional jump-diffusion processes. Probability and Mathematical Statistics 20, 399–423 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Di Nardo, E., Nobile, A.G., Pirozzi, E., Ricciardi, L.M.: A computational approach to first-passage-time problems for Gauss-Markov processes. Advances in Applied Probability 33, 53–482 (2001)

    Google Scholar 

  3. Di Nardo, E., Nobile, A.G., Pirozzi, E., Ricciardi, L.M., Rinaldi, S.: Simulation of Gaussian processes and first passage time densities evaluation. In: Pichler, F., Moreno-Díaz, R., Kopacek, P. (eds.) Computer Aided Systems Theory – EUROCAST 1999, pp. 319–333. Springer, Berlin (2000)

    Chapter  Google Scholar 

  4. Gerstein, G.L., Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4, 41–68 (1964)

    Article  Google Scholar 

  5. Giraudo, M.T., Sacerdote, L.: Some remarks on first-passage-time for jump-diffusion processes. In: Trappl, R. (ed.) Cybernetics and Systems 1996, pp. 518–523. Austrian Society for Cybernetic Studies, Vienna (1996)

    Google Scholar 

  6. Giraudo, M.T., Sacerdote, L.: Jump-diffusion processes as models for neuronal activity. BioSystems 40, 75–82 (1997)

    Article  Google Scholar 

  7. Giraudo, M.T., Sacerdote, L.: Simulation methods in neuronal modelling. BioSystems 48, 77–83 (1998)

    Article  Google Scholar 

  8. Giraudo, M.T., Sacerdote, L., Sirovich, R.: Effects of random jumps on a very simple neuronal diffusion model. BioSystems 67, 75–83 (2002)

    Article  Google Scholar 

  9. Giraudo, M.T., Sacerdote, L., Zucca, C.: A Monte-Carlo method for the simulation of first passage times of diffusion processes. Methodology and Computing in Applied Probability 3, 215–231 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Musila, M., Lánský, P.: Generalized Stein’s model for anatomically complex neurons. BioSystems 25, 179–181 (1991)

    Article  Google Scholar 

  11. Ricciardi, L.M., Di Crescenzo, A., Giorno, V., Nobile, A.G.: An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling. Mathematica Japonica 50, 247–322 (1999)

    MATH  MathSciNet  Google Scholar 

  12. Ricciardi, L.M., Lánský, P.: Diffusion models of neuron activity. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 343–348. The MIT Press, Cambridge (2002) ISBN 0-262-01197-2

    Google Scholar 

  13. Rubistein, R.Y.: Simulation and the Monte Carlo Method. John Wiley & Sons, New York (1981)

    Book  Google Scholar 

  14. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)

    MATH  Google Scholar 

  15. Tuckwell, H.C.: On the first-exit time problem for temporally homogeneous Markov processes. Journal of Applied Probability 13, 39–48 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Crescenzo, A., Di Nardo, E., Ricciardi, L.M. (2005). Evaluation of Neuronal Firing Densities via Simulation of a Jump-Diffusion Process. In: Mira, J., Álvarez, J.R. (eds) Mechanisms, Symbols, and Models Underlying Cognition. IWINAC 2005. Lecture Notes in Computer Science, vol 3561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499220_18

Download citation

  • DOI: https://doi.org/10.1007/11499220_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26298-5

  • Online ISBN: 978-3-540-31672-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics