Abstract
The easiest form of designing Cellular Automata rules with features such as invertibility or particle conserving is to rely on a partitioning scheme, the most important of which is the 2D Margolus neighborhood. In this paper we introduce a 1D Margolus-like neighborhood that gives support to a complete set of Cellular Automata models. We present a set of models called Sliding Ball Models based on this neighborhood and capable of universal computation. We show the way of designing logic gates with these models, propose a digital structure to implement them and finally we present SBMTool, a software development system capable of working with the new models.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wolfram, S.: A New Kind of Science. Wolfram media (2002)
Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern Physics 55, 601–644 (1983)
Chopard, B., Droz, M.: Cellular Automata Modelling of Physical Systems. Cambridge University Press, Cambridge (1998)
Popovici, A., Popovici, D.: Cellular Automata in Image Processing. In: Proceedings of MTNS 2002 (2002)
Toffoli, T.: Cellular Automata as an alternative to (rather than an approximation of) Differential Equations in Modeling Physics. Physica. 10D, 117–127 (1984)
Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986)
Sarkar, P.: A brief history of cellular automata. ACM Computing Surveys 32(1), 80–107 (2000)
Shackleford, B., Tanaka, M., Carter, R.J., Snider, G.: FPGA Implementation of Neighborhood-of-Four Cellular Automata Random Number Generators. In: Proceedings of FPGA 2002, pp. 106–112 (2002)
Toffoli, T., Margolus, N.: Invertible cellular automata: a review. Physica D, Nonlinear Phenomena 45, 1–3 (1990)
Margolus, N.: Physics-Like models of computation. Physica. 10D, 81–95 (1984)
Cerdá, J., Gadea, R., Payá, G.: Implementing a Margolus neighborhood Cellular Automata on a FPGA. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 121–128. Springer, Heidelberg (2003)
Cerdá, J., Gadea, R., Herrero, V., Sebastiá, A.: On the Implementation of a Margolus neighborhood Cellular Automata on FPGA. In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 776–785. Springer, Heidelberg (2003)
Fredkin, E., Toffoli, T.: Conservative Logic. International journal of Theoretical Physics 21, 219–253 (1982)
Margolus, N.: Universal CA’s based on the collisions of soft spheres. In: Adamatzky ed. Collision Based Computation. Springer, Heidelberg (2002)
Cerdá, J.: Arquitecturas VLSI de Autómatas Celulares para modelado físico. PhD Thesis. Universidad Politécnica de Valencia (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cerdá, J., Gadea, R., Martínez, J.D., Sebastiá, A. (2005). A Tool for Implementing and Exploring SBM Models: Universal 1D Invertible Cellular Automata. In: Mira, J., Álvarez, J.R. (eds) Mechanisms, Symbols, and Models Underlying Cognition. IWINAC 2005. Lecture Notes in Computer Science, vol 3561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499220_29
Download citation
DOI: https://doi.org/10.1007/11499220_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26298-5
Online ISBN: 978-3-540-31672-5
eBook Packages: Computer ScienceComputer Science (R0)