Abstract
The so-called WTC-Kruskal algorithm is presented in order to study the Painlevé integrability of nonlinear partial differential equations, which combines the WTC algorithm and Kruskal’s simplification algorithm. Based on the WTC, Kruskal and WTC-Kruskal algorithms, we give an implementation in Maple called PDEPtest. The applications of PDEPtest to several nonlinear partial differential equations are also presented and some new results are reported.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1999)
Weiss, J., Tabor, M., Carnevale, G.: The Painlevé Property of Partial Differential Equations. J. Math. Phys. 24, 522–526 (1983)
Jimbo, M., Kruskal, M.D., Miwa, T.: The Painlevé Test for the Self-dual Yang-Mills Equations. Phys. Lett. A. 92, 59 (1982)
Conte, R.: Invariant Painlevé Analysis of Partial Differential Equations. Phys. Lett. A 140, 383–389 (1989)
Conte, R., Fordy, A.P., Pickering, A.: A Perturbation Painlevé Approach to Nonlinear Differential Equations. Phys. D 69, 33–58 (1993)
Lou, S.Y., Chen, C.L., Tang, X.Y.: (2+1)-Dimensional (M+N)-Component AKNS System: Painlevé Integrability, Infinitely Many Symmetries and Similarity Reductions. J. Math. Phys. 43, 4078–4109 (2002)
Estévez, P.G., Conde, E., Gordoa, P.R.: Unified Approach to Miura, Bäcklund and Darboux Transformations for Nonlinear Partial Differential Equations. J. Nonlinear Math. Phys. 5, 82–114 (1998)
Chowdhury, A.R.: The Painlevé Analysis and Its Applications. Chapman & Hall/CRC, Baton Rouge, Florida (2000)
Newell, A.C., Tabor, M., Zeng, Y.B.: A Unified Approach to Painlevé Expansion. Phys. D 29, 1–68 (1987)
Xu, G.Q., Li, Z.B.: A Maple Package for the Painlevé Test of Nonlinear Partial Differential Equations. Chin. Phys. Lett. 20, 975–978 (2003)
Conte, R. (ed.): The Painlevé Property, One Century Later. Springer, New York (1999)
Hlavatý, L.: Test of Resonances in the Painlevé Analysis. Comput. Phys. Commun. 42, 427–433 (1986)
Scheen, C.: Implementation of the Painlevé Test for Ordinary Differential Equation. Theor. Comput. Sci. 187, 87–104 (1997)
Hereman, W., Angenent, S.: The Painlevé Test for Nonlinear Ordinary and Partial Differential Equations. MACSYMA Newsletter 6, 11–18 (1989)
Hereman, W., Göktas, Ü., Colagrosso, M., et al.: Algorithmic Integrability Tests of Nonlinear Differential and Lattice Equations. Comput. Phys. Commun. 115, 428–446 (1998)
Baldwin, D., Hereman, W., Sayers, J.: Symbolic Algorithms for the Painlevé Test. In: Winternitz, P., Gomez-Ullate, D. (eds.) Special Solutions, and Recursion Operators of Nonlinear PDEs. CRM Proceedings and Lecture series, vol. 39, pp. 17–32. American Mathematical Society, Providence (2004)
Xie, F.D., Chen, Y.: Algorithmic Method in Painlevé Analysis of PDE. Comput. Phys. Commun. 154, 197–204 (2003)
Xu, G.Q., Li, Z.B.: Symbolic Computation of the Painlevé Test for Nonlinear Partial Differential Equations using Maple. Comput. Phys. Commun. 161, 65–75 (2004)
Yan, Z.Y.: New Families of Non-travelling Wave Solutions to a New (3+1)-Dimensional Potential-YTSF Equation. Phys. Lett. A. 318, 78–83 (2003)
Parkes, E.J., Duffy, B.R., Abbott, P.C.: The Jacobi Elliptic Function Method for Finding Periodic-wave Solutions to Nonlinear Evolution Equations. Phys. Lett. A. 295, 280–286 (2002)
Hirota, R.: Direct Methods in Soliton Theory. In: Bullough, R.K., Caudrey, P.J. (eds.) Solitons. Springer, Berlin (1980)
Maccari, A.: A Generalized Hirota Equation in 2+1 Dimensions. J. Math. Phys. 39, 6547–6551 (1998)
Estévez, P.G.: A Nonisospectral Problem in (2+1) Dimensions Derived from KP. Inverse Problems 17, 1043–1052 (2001)
Geng, X.G.: Algebraic-geometrical Solutions of Some Multidimensional Nonlinear Evolution Equations. J. Phys. A: Math. Gen. 36, 2289–2301 (2003)
Ayse, K.K., Atalay, K., Sergei, Y.S.: Integrability of a Generalized Ito System: The Painlevé Test. J. Phys. Soc. Jpn. 70, 1165–1166 (2001)
Das, K.P., Verheest, F.: Ion-acoustic Solitons in Magnetized Multi-component Plasmas Including Negative Ions. J. Plasma Phys. 41, 139–155 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xu, Gq., Li, Zb. (2005). The Painlevé Test of Nonlinear Partial Differential Equations and Its Implementation Using Maple. In: Li, H., Olver, P.J., Sommer, G. (eds) Computer Algebra and Geometric Algebra with Applications. IWMM GIAE 2004 2004. Lecture Notes in Computer Science, vol 3519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499251_15
Download citation
DOI: https://doi.org/10.1007/11499251_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26296-1
Online ISBN: 978-3-540-32119-4
eBook Packages: Computer ScienceComputer Science (R0)