Skip to main content

The Painlevé Test of Nonlinear Partial Differential Equations and Its Implementation Using Maple

  • Conference paper
Book cover Computer Algebra and Geometric Algebra with Applications (IWMM 2004, GIAE 2004)

Abstract

The so-called WTC-Kruskal algorithm is presented in order to study the Painlevé integrability of nonlinear partial differential equations, which combines the WTC algorithm and Kruskal’s simplification algorithm. Based on the WTC, Kruskal and WTC-Kruskal algorithms, we give an implementation in Maple called PDEPtest. The applications of PDEPtest to several nonlinear partial differential equations are also presented and some new results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé Property of Partial Differential Equations. J. Math. Phys. 24, 522–526 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Jimbo, M., Kruskal, M.D., Miwa, T.: The Painlevé Test for the Self-dual Yang-Mills Equations. Phys. Lett. A. 92, 59 (1982)

    Article  MathSciNet  Google Scholar 

  4. Conte, R.: Invariant Painlevé Analysis of Partial Differential Equations. Phys. Lett. A 140, 383–389 (1989)

    Article  MathSciNet  Google Scholar 

  5. Conte, R., Fordy, A.P., Pickering, A.: A Perturbation Painlevé Approach to Nonlinear Differential Equations. Phys. D 69, 33–58 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lou, S.Y., Chen, C.L., Tang, X.Y.: (2+1)-Dimensional (M+N)-Component AKNS System: Painlevé Integrability, Infinitely Many Symmetries and Similarity Reductions. J. Math. Phys. 43, 4078–4109 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Estévez, P.G., Conde, E., Gordoa, P.R.: Unified Approach to Miura, Bäcklund and Darboux Transformations for Nonlinear Partial Differential Equations. J. Nonlinear Math. Phys. 5, 82–114 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chowdhury, A.R.: The Painlevé Analysis and Its Applications. Chapman & Hall/CRC, Baton Rouge, Florida (2000)

    Google Scholar 

  9. Newell, A.C., Tabor, M., Zeng, Y.B.: A Unified Approach to Painlevé Expansion. Phys. D 29, 1–68 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Xu, G.Q., Li, Z.B.: A Maple Package for the Painlevé Test of Nonlinear Partial Differential Equations. Chin. Phys. Lett. 20, 975–978 (2003)

    Article  Google Scholar 

  11. Conte, R. (ed.): The Painlevé Property, One Century Later. Springer, New York (1999)

    MATH  Google Scholar 

  12. Hlavatý, L.: Test of Resonances in the Painlevé Analysis. Comput. Phys. Commun. 42, 427–433 (1986)

    Article  Google Scholar 

  13. Scheen, C.: Implementation of the Painlevé Test for Ordinary Differential Equation. Theor. Comput. Sci. 187, 87–104 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hereman, W., Angenent, S.: The Painlevé Test for Nonlinear Ordinary and Partial Differential Equations. MACSYMA Newsletter 6, 11–18 (1989)

    Google Scholar 

  15. Hereman, W., Göktas, Ü., Colagrosso, M., et al.: Algorithmic Integrability Tests of Nonlinear Differential and Lattice Equations. Comput. Phys. Commun. 115, 428–446 (1998)

    Article  Google Scholar 

  16. Baldwin, D., Hereman, W., Sayers, J.: Symbolic Algorithms for the Painlevé Test. In: Winternitz, P., Gomez-Ullate, D. (eds.) Special Solutions, and Recursion Operators of Nonlinear PDEs. CRM Proceedings and Lecture series, vol. 39, pp. 17–32. American Mathematical Society, Providence (2004)

    Google Scholar 

  17. Xie, F.D., Chen, Y.: Algorithmic Method in Painlevé Analysis of PDE. Comput. Phys. Commun. 154, 197–204 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, G.Q., Li, Z.B.: Symbolic Computation of the Painlevé Test for Nonlinear Partial Differential Equations using Maple. Comput. Phys. Commun. 161, 65–75 (2004)

    Article  MATH  Google Scholar 

  19. Yan, Z.Y.: New Families of Non-travelling Wave Solutions to a New (3+1)-Dimensional Potential-YTSF Equation. Phys. Lett. A. 318, 78–83 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Parkes, E.J., Duffy, B.R., Abbott, P.C.: The Jacobi Elliptic Function Method for Finding Periodic-wave Solutions to Nonlinear Evolution Equations. Phys. Lett. A. 295, 280–286 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hirota, R.: Direct Methods in Soliton Theory. In: Bullough, R.K., Caudrey, P.J. (eds.) Solitons. Springer, Berlin (1980)

    Google Scholar 

  22. Maccari, A.: A Generalized Hirota Equation in 2+1 Dimensions. J. Math. Phys. 39, 6547–6551 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Estévez, P.G.: A Nonisospectral Problem in (2+1) Dimensions Derived from KP. Inverse Problems 17, 1043–1052 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Geng, X.G.: Algebraic-geometrical Solutions of Some Multidimensional Nonlinear Evolution Equations. J. Phys. A: Math. Gen. 36, 2289–2301 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ayse, K.K., Atalay, K., Sergei, Y.S.: Integrability of a Generalized Ito System: The Painlevé Test. J. Phys. Soc. Jpn. 70, 1165–1166 (2001)

    Article  MATH  Google Scholar 

  26. Das, K.P., Verheest, F.: Ion-acoustic Solitons in Magnetized Multi-component Plasmas Including Negative Ions. J. Plasma Phys. 41, 139–155 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, Gq., Li, Zb. (2005). The Painlevé Test of Nonlinear Partial Differential Equations and Its Implementation Using Maple. In: Li, H., Olver, P.J., Sommer, G. (eds) Computer Algebra and Geometric Algebra with Applications. IWMM GIAE 2004 2004. Lecture Notes in Computer Science, vol 3519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499251_15

Download citation

  • DOI: https://doi.org/10.1007/11499251_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26296-1

  • Online ISBN: 978-3-540-32119-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics