Abstract
In this tutorial paper we will report on our experience in the use of geometric algebra (GA) in robot vision. The results could be reached in a long term research programme on modelling the perception-action cycle within geometric algebra. We will pick up three important applications from image processing, pattern recognition and computer vision. By presenting the problems and their solutions from an engineering point of view, the intention is to stimulate other applications of GA.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Banarer, V., Perwass, C., Sommer, G.: The hypersphere neuron. In: Proc. 11th European Symposium on Artificial Neural Networks, ESANN 2003, Bruges, pp. 469–474. D-side publications, Evere (2003)
Bayro-Corrochano, E., Daniilidis, K., Sommer, G.: Motor algebra for 3d kinematics: The case of hand-eye calibration. Journal of Mathematical Imaging and Vision 13, 79–100 (2000)
Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Advanced Publ. Program, Boston (1982)
Buchholz, S., Sommer, G.: Learning geometric transformations with Clifford neurons. In: Sommer, G., Zeevi, Y. (eds.) AFPAC 2000. LNCS, vol. 1888, pp. 144–153. Springer, Heidelberg (2000)
Buchholz, S., Sommer, G.: Introduction to neural computation in Clifford algebra. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra, pp. 291–314. Springer, Heidelberg (2001)
Bülow, T.: Hypercomplex spectral signal representations for the processing and analysis of images. Technical Report Number 9903, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik (August 1999)
Bülow, T., Sommer, G.: Hypercomplex signals - a novel extension of the analytic signal to the multidimensional case. IEEE Transactions on Signal Processing 49(11), 2844–2852 (2001)
Felsberg, M.: Low-level image processing with the structure multivector. Technical Report Number 0203, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik, März (2002)
Felsberg, M., Sommer, G.: The monogenic signal. IEEE Transactions on Signal Processing 49(12), 3136–3144 (2001)
Hartley, R.V.L.: A more symmetrical Fourier analysis applied to transmission problems. Proc. IRE 30, 144–150 (1942)
Hestenes, D.: The design of linear algebra and geometry. Acta Appl. Math. 23, 65–93 (1991)
Hestenes, D., Li, H., Rockwood, A.: New algebraic tools for classical geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras, pp. 3–23. Springer, Heidelberg (2001)
Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras, pp. 27–59. Springer, Heidelberg (2001)
Needham, T.: Visual Complex Analysis. Clarendon Press, Oxford (1997)
Rosenhahn, B.: Pose estimation revisited. Technical Report Number 0308, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik (September 2003)
Rosenhahn, B., Perwass, C., Sommer, G.: Free-form pose estimation by using twist representations. Algorithmica 38, 91–113 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sommer, G. (2005). Applications of Geometric Algebra in Robot Vision. In: Li, H., Olver, P.J., Sommer, G. (eds) Computer Algebra and Geometric Algebra with Applications. IWMM GIAE 2004 2004. Lecture Notes in Computer Science, vol 3519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499251_21
Download citation
DOI: https://doi.org/10.1007/11499251_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26296-1
Online ISBN: 978-3-540-32119-4
eBook Packages: Computer ScienceComputer Science (R0)