Abstract
We give a contribution to the representation problem of free-form curves and surfaces. Our proposal is an operational or kinematic approach based on the Lie group SE(3). While in Euclidean space the modelling of shape as an orbit of a point under the action of SE(3) is limited, we are embedding our problem into the conformal geometric algebra ℝ4,1 of the Euclidean space ℝ3. This embedding results in a number of advantages which makes the proposed method a universal and flexible one with respect to applications. It makes possible the robust and fast estimation of the pose of 3D objects from incomplete and noisy image data. Especially advantagous is the equivalence of the proposed shape model to that of the Fourier representations.
This work has been partially supported (G.S. and C.P.) by EC Grant IST-2001-3422 (VISATEC), by DFG Grant RO 2497/1-1 (B.R.), and by DFG Graduiertenkolleg No. 357 (B.R. and C.P.).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arbter, K.: Affine-invariant fourier descriptors. In: Simon, J.C. (ed.) From Pixels to Features, pp. 153–164. Elsevier Science Publishers, Amsterdam (1989)
Bracewell, R.N.: The Fourier Transform and its Applications. McGraw Hill Book Company, New York (1984)
Dorst, L., Fontijne, D.: An algebraic foundation for object-oriented euclidean geometry. In: Hitzer, E.M.S., Nagaoka, R. (eds.) Proc. Innovative Teaching in Mathematics with Geometric Algebra, Kyoto, Research Institute for Mathematics, Kyoto University, May 2004, pp. 138–153 (2004)
Farouki, R.T.: Curves from motion, motion from curves. In: Laurent, P.-J., Sablonniere, P., Schumaker, L.L. (eds.) Curve and Surface Design. Vanderbilt University Press, Nashville (2000)
Faugeras, O.: Stratification of three-dimensional vision: projective, affine and metric representations. Journ. of the Optical Soc. of America 12, 465–484 (1995)
Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Processing 49(12), 3136–3144 (2001)
Felsberg, M., Sommer, G.: The monogenic scale-space: A unified approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision 21, 5–26 (2004)
Granlund, G., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publ., Dordrecht (1995)
Granlund, G.H.: Fourier processing for hand print character recognition. IEEE Trans. Computers 21, 195–201 (1972)
Grassia, F.S.: Practical parameterization of rotations using the exponential map. Journal of Graphics Tools 3(3), 29–48 (1998)
Hartley, R.V.L.: A more symmetrical fourier analysis applied to transmission problems. In: Proc. IRE, vol. 30, pp. 144–150 (1942)
Hestenes, D.: The design of linar algebra and geometry. Acta Appl. Math. 23, 65–93 (1991)
Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. D. Reidel Publ. Comp., Dordrecht (1984)
Kuhl, F.P., Giardina, C.R.: Elliptic fourier features of a closed contour. Computer Graphics and Image Processing 18, 236–258 (1982)
Lasenby, A., Lasenby, J.: Surface evolution and representation using geometric algebra. In: Cipolla, R., Martin, R. (eds.) The Mathematics of Surfaces IX, pp. 144–168. Springer, London (2000)
Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras, pp. 27–59. Springer, Heidelberg (2001)
McCarthy, J.M.: Introduction to Theoretical Kinematics. MIT Press, Cambridge (1990)
Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)
Needham, T.: Visual Complex Analysis. Clarendon Press, Oxford (1997)
Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice Hall Inc., Upper Saddle River (1989)
Perwass, C., Hildenbrand, D.: Aspects of geometric algebra in euclidean, projective and conformal space. Technical Report 0310, Technical Report, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik (2003)
Perwass, C., Sommer, G.: Numerical evaluation of versors with clifford algebra. In: Dorst, L., Doran, C., Lasenby, J. (eds.) Applications of Geometric Algebra in Computer Science and Engineering, pp. 341–350. Birkhäuser, Boston (2002)
Rooney, J.: A comparison of representations of general screw displacements. Environment and Planning B 5, 45–88 (1978)
Rosenhahn, B.: Pose estimation revisited. Technical Report 0308, PhD thesis, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik (2003)
Rosenhahn, B., Perwass, C., Sommer, G.: Free-form pose estimation by using twist representations. Algorithmica 38, 91–113 (2004)
Small, C.G.: The Statistical Theory of Shape. Springer, New York (1996)
Sommer, G.: Algebraic aspects of designing behavior based systems. In: Sommer, G., Koenderink, J.J. (eds.) AFPAC 1997. LNCS, vol. 1315, pp. 1–28. Springer, Heidelberg (1997)
Sommer, G.: Geometric Computing with Clifford Algebras. Springer, Heidelberg (2001)
Turski, J.: Projective fourier analysis for patterns. Pattern Recognition 33, 2033–2043 (2000)
Turski, J.: Geometric fourier analysis of the conformal camera for active vision. SIAM Review 46(2), 230–255 (2004)
Wallace, T.P., Mitchell, O.R.: Analysis of three-dimensional movements using fourier descriptors. IEEE Trans. Pattern Analysis and Machine Intell. 2(6), 583–588 (1980)
Yaglom, M.: Felix Klein and Sophus Lie. Birkhäuser, Boston (1988)
Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. IEEE Trans. Computers 21, 269–281 (1972)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sommer, G., Rosenhahn, B., Perwass, C. (2005). Twists – An Operational Representation of Shape. In: Li, H., Olver, P.J., Sommer, G. (eds) Computer Algebra and Geometric Algebra with Applications. IWMM GIAE 2004 2004. Lecture Notes in Computer Science, vol 3519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499251_22
Download citation
DOI: https://doi.org/10.1007/11499251_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26296-1
Online ISBN: 978-3-540-32119-4
eBook Packages: Computer ScienceComputer Science (R0)