Abstract
In this article, a procedure to estimate a nonlinear models set (Θ p ) in a robust identification context, is presented. The estimated models are Pareto optimal when several identification error norms are considered simultaneously. A new multiobjective evolutionary algorithm \(\epsilon\nearrow - MOEA\) has been designed to converge towards Θ\(_{P}^{\rm \star}\), a reduced but well distributed representation of Θ P since the algorithm achieves good convergence and distribution of the Pareto front J(Θ). Finally, an experimental application of the \(\epsilon\nearrow - MOEA\) algorithm to the nonlinear robust identification of a scale furnace is presented. The model has three unknown parameters and ℓ ∞ and ℓ1 norms are been taken into account.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deb, K., Mohan, M., Mishra, S.: A fast multi-objective evolutionary algorithm for finding well-spread pareto-optimal solutions. Technical Report 2003002 KanGAL (2003)
Garulli, A., Kacewicz, B., Vicino, A., Zappa, G.: Error Bounds for Conditional Algorithms in Restricted Complexity Set Membership Identification. IEEE Transaction on Automatic Control 45(1), 160–164 (2000)
Goldberg, D.E.: Genetic Algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)
Herrero, J.M., Blasco, X., Salcedo, J.V., Ramos, C.: Membership-Set Estimation with Genetic Algorithms in Nonlinear Models. In: Proc. of the XV international Conference on Systems Science (2004)
Blasco, X., Herrero, J.M., Martínez, M., Senent, J.: Nonlinear parametric model identification with Genetic Algorithms. Application to thermal process. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, p. 466. Springer, Heidelberg (2001)
Johansson, R.: System modeling identification. Prentice-Hall, Englewood Cliffs (1993)
Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary computation 10(3) (2002)
Ram, B., Gupta, H., Bandyopadhyay, P., Deb, K., Adimurthy, V.: Robust Identification of Aerospace Propulsion Parameters using Optimization Techniques based on Evolutionary Algorithms. Technical Report 2003005 KanGAL (2003)
Reinelt, W., Garulli, A., Ljung, L.: Comparing different approaches to model error modelling in robust identification. Automatica 38(5), 787–803 (2002)
Pronzalo, L., Walter, E.: Identification of parametric models from experimental data. Springer, Heidelberg (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Herrero, J.M., Blasco, X., Martínez, M., Ramos, C. (2005). Nonlinear Robust Identification Using Multiobjective Evolutionary Algorithms. In: Mira, J., Álvarez, J.R. (eds) Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. IWINAC 2005. Lecture Notes in Computer Science, vol 3562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499305_24
Download citation
DOI: https://doi.org/10.1007/11499305_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26319-7
Online ISBN: 978-3-540-31673-2
eBook Packages: Computer ScienceComputer Science (R0)