Skip to main content

Solving the Multidimensional Knapsack Problem Using an Evolutionary Algorithm Hybridized with Branch and Bound

  • Conference paper
Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach (IWINAC 2005)

Abstract

A hybridization of an evolutionary algorithm (EA) with the branch and bound method (B&B) is presented in this paper. Both techniques cooperate by exchanging information, namely lower bounds in the case of the EA, and partial promising solutions in the case of the B&B. The multidimensional knapsack problem has been chosen as a benchmark. To be precise, the algorithms have been tested on large problems instances from the OR-library. As it will be shown, the hybrid approach can provide high quality results, better than those obtained by the EA and the B&B on their own.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lawler, E., Wood, D.: Branch and bounds methods: A survey. Operations Research 4, 669–719 (1966)

    MathSciNet  Google Scholar 

  2. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  3. Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation. Oxford University Press, New York (1997)

    Book  MATH  Google Scholar 

  4. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  5. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1, 67–82 (1997)

    Article  Google Scholar 

  6. Culberson, J.: On the futility of blind search: An algorithmic view of no free lunch. Evolutionary Computation 6, 109–128 (1998)

    Article  Google Scholar 

  7. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Co, San Francisco (1979)

    MATH  Google Scholar 

  8. Salkin, H., Mathur, K.: Foundations of Integer Programming. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  9. Khuri, S., Bäck, T., Heitkötter, J.: The zero/one multiple knapsack problem and genetic algorithms. In: Deaton, E., Oppenheim, D., Urban, J., Berghel, H. (eds.) Proceedings of the 1994 ACM Symposium on Applied Computation, pp. 188–193. ACM Press, New York (1994)

    Chapter  Google Scholar 

  10. Cotta, C., Troya, J.: A hybrid genetic algorithm for the 0-1 multiple knapsack problem. In Smith, G., Steele, N., Albrecht, R., eds.: Artificial Neural Nets and Genetic Algorithms 3, Wien New York, Springer-Verlag (1998) 251–255

    Google Scholar 

  11. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics 4, 63–86 (1998)

    Article  MATH  Google Scholar 

  12. Gottlieb, J.: Permutation-based evolutionary algorithms for multidimensional knapsack problems. In: Carroll, J., Damiani, E., Haddad, H., Oppenheim, D. (eds.) ACM Symposium on Applied Computing 2000, pp. 408–414. ACM Press, New York (2000)

    Chapter  Google Scholar 

  13. Raidl, G., Gottlieb, J.: Empirical analysis of locality, heritability and heuristic bias in evolutionary algorithms: A case study for the multidimensional knapsack problem. Technical Report TR 186–1–04–05, Institute of Computer Graphics and Algorithms, Vienna University of Technology (2004)

    Google Scholar 

  14. Cotta, C., Aldana, J.F., Nebro, A.J., Troya, J.M.: Hybridizing genetic algorithms with branch and bound techniques for the resolution of the TSP. In: Pearson, D.W., Steele, N.C., Albrecht, R.F. (eds.) Artificial Neural Nets and Genetic Algorithms 2, Wien, New York, pp. 277–280. Springer, Heidelberg (1995)

    Google Scholar 

  15. Volgenant, A., Jonker, R.: A branch and bound algorithm for the symmetric traveling salesman problem based on the 1-tree relaxation. European Journal of Operational Research 9, 83–88 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nagard, A., Heragu, S.S., Haddock, J.: A combined branch and bound and genetic algorithm based for a flowshop scheduling algorithm. Annals of Operation Research 63, 397–414 (1996)

    Article  Google Scholar 

  17. French, A., Robinson, A., Wilson, J.: Using a hybrid genetic-algorithm/branch and bound approach to solve feasibility and optimization integer programming problems. Journal of Heuristics 7, 551–564 (2001)

    Article  MATH  Google Scholar 

  18. Cotta, C., Troya, J.: Embedding branch and bound within evolutionary algorithms. Applied Intelligence 18, 137–153 (2003)

    Article  MATH  Google Scholar 

  19. Beasley, J.: Or-library: distributing test problems by electronic mail. Journal of the Operational Research Society 41, 1069–1072 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gallardo, J.E., Cotta, C., Fernández, A.J. (2005). Solving the Multidimensional Knapsack Problem Using an Evolutionary Algorithm Hybridized with Branch and Bound. In: Mira, J., Álvarez, J.R. (eds) Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. IWINAC 2005. Lecture Notes in Computer Science, vol 3562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499305_3

Download citation

  • DOI: https://doi.org/10.1007/11499305_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26319-7

  • Online ISBN: 978-3-540-31673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics